Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Feb;95(2):619–627. doi: 10.1172/JCI117706

Insulin-like growth factor-1 enhances ventricular hypertrophy and function during the onset of experimental cardiac failure.

R L Duerr 1, S Huang 1, H R Miraliakbar 1, R Clark 1, K R Chien 1, J Ross Jr 1
PMCID: PMC295527  PMID: 7860746

Abstract

To determine whether additional hypertrophy would be beneficial or maladaptive in cardiac failure, the effects of insulin-like growth factor (IGF-1) were investigated in rats with left ventricular (LV) dysfunction. In normal rats, 3 mg/kg per d of recombinant human IGF-1 for 14 d augmented LV wt (32%) and increased LV/body wt ratio (P < 0.01). 2 d after coronary occlusion, rats were randomized to IGF-1 (3 mg/kg per d) or placebo. After 2 wk, IGF-1-treated rats showed significant increases in LV wt (13%) and LV wt/tibial length ratio, but LV/body wt ratio was unchanged. By microangiography, compared with controls (n = 12) IGF-1-treated rats (n = 16) showed increased LV end-diastolic volume (19%) and stroke volume (31%) (both significant normalized to tibial length, but not to body wt). Average infarct size did not differ between groups. The LV ejection fraction (EF) was not significantly different between groups, but estimated cardiac output was higher in treated rats; there was a significant interaction for the EF between infarct size and treatment (P = 0.029) and a trend for EF to be higher in treated rats with large infarctions (EF 33.4 vs 25.1% in controls). Myocyte cross-sectional areas in noninfarcted LV zones tended to be larger in treated rats (232.1 vs 205.4 microns 2; P = 0.10), but there was no difference in capillary density and collagen content did not differ between groups. In conclusion, IGF-1 administration caused hypertrophy of the normal heart in vivo. When stimulated by IGF-1, the severely dysfunctional heart in evolving myocardial infarction is capable of undergoing additional hypertrophy with evidence of improved function, suggesting a beneficial effect. Further investigation of the potential role of growth factor therapy in heart failure appears warranted.

Full text

PDF
619

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amato G., Carella C., Fazio S., La Montagna G., Cittadini A., Sabatini D., Marciano-Mone C., Saccá L., Bellastella A. Body composition, bone metabolism, and heart structure and function in growth hormone (GH)-deficient adults before and after GH replacement therapy at low doses. J Clin Endocrinol Metab. 1993 Dec;77(6):1671–1676. doi: 10.1210/jcem.77.6.8263158. [DOI] [PubMed] [Google Scholar]
  2. Ambler G. R., Johnston B. M., Maxwell L., Gavin J. B., Gluckman P. D. Improvement of doxorubicin induced cardiomyopathy in rats treated with insulin-like growth factor I. Cardiovasc Res. 1993 Jul;27(7):1368–1373. doi: 10.1093/cvr/27.7.1368. [DOI] [PubMed] [Google Scholar]
  3. Anversa P., Beghi C., Kikkawa Y., Olivetti G. Myocardial infarction in rats. Infarct size, myocyte hypertrophy, and capillary growth. Circ Res. 1986 Jan;58(1):26–37. doi: 10.1161/01.res.58.1.26. [DOI] [PubMed] [Google Scholar]
  4. Baker K. M., Chernin M. I., Wixson S. K., Aceto J. F. Renin-angiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am J Physiol. 1990 Aug;259(2 Pt 2):H324–H332. doi: 10.1152/ajpheart.1990.259.2.H324. [DOI] [PubMed] [Google Scholar]
  5. Breier B. H., Gallaher B. W., Gluckman P. D. Radioimmunoassay for insulin-like growth factor-I: solutions to some potential problems and pitfalls. J Endocrinol. 1991 Mar;128(3):347–357. doi: 10.1677/joe.0.1280347. [DOI] [PubMed] [Google Scholar]
  6. Buñag R. D., Butterfield J. Tail-cuff blood pressure measurement without external preheating in awake rats. Hypertension. 1982 Nov-Dec;4(6):898–903. doi: 10.1161/01.hyp.4.6.898. [DOI] [PubMed] [Google Scholar]
  7. Chanson P., Timsit J., Masquet C., Warnet A., Guillausseau P. J., Birman P., Harris A. G., Lubetzki J. Cardiovascular effects of the somatostatin analog octreotide in acromegaly. Ann Intern Med. 1990 Dec 15;113(12):921–925. doi: 10.7326/0003-4819-113-12-921. [DOI] [PubMed] [Google Scholar]
  8. Chien K. R., Knowlton K. U., Zhu H., Chien S. Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J. 1991 Dec;5(15):3037–3046. doi: 10.1096/fasebj.5.15.1835945. [DOI] [PubMed] [Google Scholar]
  9. Chien K. R. Molecular advances in cardiovascular biology. Science. 1993 May 14;260(5110):916–917. doi: 10.1126/science.8493528. [DOI] [PubMed] [Google Scholar]
  10. Chien K. R., Zhu H., Knowlton K. U., Miller-Hance W., van-Bilsen M., O'Brien T. X., Evans S. M. Transcriptional regulation during cardiac growth and development. Annu Rev Physiol. 1993;55:77–95. doi: 10.1146/annurev.ph.55.030193.000453. [DOI] [PubMed] [Google Scholar]
  11. DODGE H. T., SANDLER H., BALLEW D. W., LORD J. D., Jr The use of biplane angiocardigraphy for the measurement of left ventricular volume in man. Am Heart J. 1960 Nov;60:762–776. doi: 10.1016/0002-8703(60)90359-8. [DOI] [PubMed] [Google Scholar]
  12. Donohue T. J., Dworkin L. D., Lango M. N., Fliegner K., Lango R. P., Benstein J. A., Slater W. R., Catanese V. M. Induction of myocardial insulin-like growth factor-I gene expression in left ventricular hypertrophy. Circulation. 1994 Feb;89(2):799–809. doi: 10.1161/01.cir.89.2.799. [DOI] [PubMed] [Google Scholar]
  13. Fuller S. J., Mynett J. R., Sugden P. H. Stimulation of cardiac protein synthesis by insulin-like growth factors. Biochem J. 1992 Feb 15;282(Pt 1):85–90. doi: 10.1042/bj2820085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gay R. G., Graham S., Aguirre M., Goldman S., Morkin E. Effects of 10- to 12-day treatment with L-thyroxine in rats with myocardial infarction. Am J Physiol. 1988 Oct;255(4 Pt 2):H801–H806. doi: 10.1152/ajpheart.1988.255.4.H801. [DOI] [PubMed] [Google Scholar]
  15. Gerdes A. M., Kellerman S. E., Moore J. A., Muffly K. E., Clark L. C., Reaves P. Y., Malec K. B., McKeown P. P., Schocken D. D. Structural remodeling of cardiac myocytes in patients with ischemic cardiomyopathy. Circulation. 1992 Aug;86(2):426–430. doi: 10.1161/01.cir.86.2.426. [DOI] [PubMed] [Google Scholar]
  16. Indolfi C., Guth B. D., Miura T., Miyazaki S., Schulz R., Ross J., Jr Mechanisms of improved ischemic regional dysfunction by bradycardia. Studies on UL-FS 49 in swine. Circulation. 1989 Oct;80(4):983–993. doi: 10.1161/01.cir.80.4.983. [DOI] [PubMed] [Google Scholar]
  17. Isgaard J., Möller C., Isaksson O. G., Nilsson A., Mathews L. S., Norstedt G. Regulation of insulin-like growth factor messenger ribonucleic acid in rat growth plate by growth hormone. Endocrinology. 1988 Apr;122(4):1515–1520. doi: 10.1210/endo-122-4-1515. [DOI] [PubMed] [Google Scholar]
  18. Ito H., Hiroe M., Hirata Y., Tsujino M., Adachi S., Shichiri M., Koike A., Nogami A., Marumo F. Insulin-like growth factor-I induces hypertrophy with enhanced expression of muscle specific genes in cultured rat cardiomyocytes. Circulation. 1993 May;87(5):1715–1721. doi: 10.1161/01.cir.87.5.1715. [DOI] [PubMed] [Google Scholar]
  19. Knowlton K. U., Baracchini E., Ross R. S., Harris A. N., Henderson S. A., Evans S. M., Glembotski C. C., Chien K. R. Co-regulation of the atrial natriuretic factor and cardiac myosin light chain-2 genes during alpha-adrenergic stimulation of neonatal rat ventricular cells. Identification of cis sequences within an embryonic and a constitutive contractile protein gene which mediate inducible expression. J Biol Chem. 1991 Apr 25;266(12):7759–7768. [PubMed] [Google Scholar]
  20. Knowlton K. U., Michel M. C., Itani M., Shubeita H. E., Ishihara K., Brown J. H., Chien K. R. The alpha 1A-adrenergic receptor subtype mediates biochemical, molecular, and morphologic features of cultured myocardial cell hypertrophy. J Biol Chem. 1993 Jul 25;268(21):15374–15380. [PubMed] [Google Scholar]
  21. Lei L. Q., Rubin S. A., Fishbein M. C. Cardiac architectural changes with hypertrophy induced by excess growth hormone in rats. Lab Invest. 1988 Sep;59(3):357–362. [PubMed] [Google Scholar]
  22. Litwin S. E., Raya T. E., Anderson P. G., Litwin C. M., Bressler R., Goldman S. Induction of myocardial hypertrophy after coronary ligation in rats decreases ventricular dilatation and improves systolic function. Circulation. 1991 Oct;84(4):1819–1827. doi: 10.1161/01.cir.84.4.1819. [DOI] [PubMed] [Google Scholar]
  23. Liu J. P., Baker J., Perkins A. S., Robertson E. J., Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell. 1993 Oct 8;75(1):59–72. [PubMed] [Google Scholar]
  24. Long C. S., Henrich C. J., Simpson P. C. A growth factor for cardiac myocytes is produced by cardiac nonmyocytes. Cell Regul. 1991 Dec;2(12):1081–1095. doi: 10.1091/mbc.2.12.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mathews L. S., Norstedt G., Palmiter R. D. Regulation of insulin-like growth factor I gene expression by growth hormone. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9343–9347. doi: 10.1073/pnas.83.24.9343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Merola B., Cittadini A., Colao A., Longobardi S., Fazio S., Sabatini D., Saccá L., Lombardi G. Cardiac structural and functional abnormalities in adult patients with growth hormone deficiency. J Clin Endocrinol Metab. 1993 Dec;77(6):1658–1661. doi: 10.1210/jcem.77.6.8263155. [DOI] [PubMed] [Google Scholar]
  27. Miura T., Miyazaki S., Guth B. D., Kambayashi M., Ross J., Jr Influence of the force-frequency relation on left ventricular function during exercise in conscious dogs. Circulation. 1992 Aug;86(2):563–571. doi: 10.1161/01.cir.86.2.563. [DOI] [PubMed] [Google Scholar]
  28. Murphy L. J., Bell G. I., Duckworth M. L., Friesen H. G. Identification, characterization, and regulation of a rat complementary deoxyribonucleic acid which encodes insulin-like growth factor-I. Endocrinology. 1987 Aug;121(2):684–691. doi: 10.1210/endo-121-2-684. [DOI] [PubMed] [Google Scholar]
  29. Oh B. H., Ono S., Rockman H. A., Ross J., Jr Myocardial hypertrophy in the ischemic zone induced by exercise in rats after coronary reperfusion. Circulation. 1993 Feb;87(2):598–607. doi: 10.1161/01.cir.87.2.598. [DOI] [PubMed] [Google Scholar]
  30. Olivetti G., Capasso J. M., Meggs L. G., Sonnenblick E. H., Anversa P. Cellular basis of chronic ventricular remodeling after myocardial infarction in rats. Circ Res. 1991 Mar;68(3):856–869. doi: 10.1161/01.res.68.3.856. [DOI] [PubMed] [Google Scholar]
  31. Ono S., Bhargava V., Ono S., Mao L., Hagan G., Rockman H. A., Ross J., Jr In vivo assessment of left ventricular remodelling after myocardial infarction by digital video contrast angiography in the rat. Cardiovasc Res. 1994 Mar;28(3):349–357. doi: 10.1093/cvr/28.3.349. [DOI] [PubMed] [Google Scholar]
  32. Parker T. G., Packer S. E., Schneider M. D. Peptide growth factors can provoke "fetal" contractile protein gene expression in rat cardiac myocytes. J Clin Invest. 1990 Feb;85(2):507–514. doi: 10.1172/JCI114466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pfeffer J. M., Pfeffer M. A., Braunwald E. Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ Res. 1985 Jul;57(1):84–95. doi: 10.1161/01.res.57.1.84. [DOI] [PubMed] [Google Scholar]
  34. Pfeffer M. A., Braunwald E., Moyé L. A., Basta L., Brown E. J., Jr, Cuddy T. E., Davis B. R., Geltman E. M., Goldman S., Flaker G. C. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med. 1992 Sep 3;327(10):669–677. doi: 10.1056/NEJM199209033271001. [DOI] [PubMed] [Google Scholar]
  35. Pickering J. G., Boughner D. R. Fibrosis in the transplanted heart and its relation to donor ischemic time. Assessment with polarized light microscopy and digital image analysis. Circulation. 1990 Mar;81(3):949–958. doi: 10.1161/01.cir.81.3.949. [DOI] [PubMed] [Google Scholar]
  36. Powell-Braxton L., Hollingshead P., Warburton C., Dowd M., Pitts-Meek S., Dalton D., Gillett N., Stewart T. A. IGF-I is required for normal embryonic growth in mice. Genes Dev. 1993 Dec;7(12B):2609–2617. doi: 10.1101/gad.7.12b.2609. [DOI] [PubMed] [Google Scholar]
  37. Rinderknecht E., Humbel R. E. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem. 1978 Apr 25;253(8):2769–2776. [PubMed] [Google Scholar]
  38. Rockman H. A., Ono S., Ross R. S., Jones L. R., Karimi M., Bhargava V., Ross J., Jr, Chien K. R. Molecular and physiological alterations in murine ventricular dysfunction. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2694–2698. doi: 10.1073/pnas.91.7.2694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rockman H. A., Wachhorst S. P., Mao L., Ross J., Jr ANG II receptor blockade prevents ventricular hypertrophy and ANF gene expression with pressure overload in mice. Am J Physiol. 1994 Jun;266(6 Pt 2):H2468–H2475. doi: 10.1152/ajpheart.1994.266.6.H2468. [DOI] [PubMed] [Google Scholar]
  40. Ross J., Jr Afterload mismatch and preload reserve: a conceptual framework for the analysis of ventricular function. Prog Cardiovasc Dis. 1976 Jan-Feb;18(4):255–264. doi: 10.1016/0033-0620(76)90021-9. [DOI] [PubMed] [Google Scholar]
  41. Rubin S. A., Buttrick P., Malhotra A., Melmed S., Fishbein M. C. Cardiac physiology, biochemistry and morphology in response to excess growth hormone in the rat. J Mol Cell Cardiol. 1990 Apr;22(4):429–438. doi: 10.1016/0022-2828(90)91478-p. [DOI] [PubMed] [Google Scholar]
  42. Sadoshima J., Xu Y., Slayter H. S., Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 1993 Dec 3;75(5):977–984. doi: 10.1016/0092-8674(93)90541-w. [DOI] [PubMed] [Google Scholar]
  43. Schaper J., Schaper W. Ultrastructural correlates of reduced cardiac function in human heart disease. Eur Heart J. 1983 Jan;4 (Suppl A):35–42. doi: 10.1093/eurheartj/4.suppl_a.35. [DOI] [PubMed] [Google Scholar]
  44. Schneider M. D., Parker T. G. Cardiac myocytes as targets for the action of peptide growth factors. Circulation. 1990 May;81(5):1443–1456. doi: 10.1161/01.cir.81.5.1443. [DOI] [PubMed] [Google Scholar]
  45. Shimatsu A., Rotwein P. Mosaic evolution of the insulin-like growth factors. Organization, sequence, and expression of the rat insulin-like growth factor I gene. J Biol Chem. 1987 Jun 5;262(16):7894–7900. [PubMed] [Google Scholar]
  46. Shubeita H. E., McDonough P. M., Harris A. N., Knowlton K. U., Glembotski C. C., Brown J. H., Chien K. R. Endothelin induction of inositol phospholipid hydrolysis, sarcomere assembly, and cardiac gene expression in ventricular myocytes. A paracrine mechanism for myocardial cell hypertrophy. J Biol Chem. 1990 Nov 25;265(33):20555–20562. [PubMed] [Google Scholar]
  47. Thuesen L., Christensen S. E., Weeke J., Orskov H., Henningsen P. The cardiovascular effects of octreotide treatment in acromegaly: an echocardiographic study. Clin Endocrinol (Oxf) 1989 Jun;30(6):619–625. doi: 10.1111/j.1365-2265.1989.tb00266.x. [DOI] [PubMed] [Google Scholar]
  48. White F. C., Witzel G., Breisch E. A., Bloor C. M., Nimmo L. E. Regional capillary and myocyte distribution in normal and exercise trained male and female rat hearts. Am J Cardiovasc Pathol. 1988;2(3):247–253. [PubMed] [Google Scholar]
  49. Wright A. J., Hudlicka O., Brown M. D. Beneficial effect of chronic bradycardial pacing on capillary growth and heart performance in volume overload heart hypertrophy. Circ Res. 1989 Jun;64(6):1205–1212. doi: 10.1161/01.res.64.6.1205. [DOI] [PubMed] [Google Scholar]
  50. Wåhlander H., Isgaard J., Jennische E., Friberg P. Left ventricular insulin-like growth factor I increases in early renal hypertension. Hypertension. 1992 Jan;19(1):25–32. doi: 10.1161/01.hyp.19.1.25. [DOI] [PubMed] [Google Scholar]
  51. Yin F. C., Spurgeon H. A., Rakusan K., Weisfeldt M. L., Lakatta E. G. Use of tibial length to quantify cardiac hypertrophy: application in the aging rat. Am J Physiol. 1982 Dec;243(6):H941–H947. doi: 10.1152/ajpheart.1982.243.6.H941. [DOI] [PubMed] [Google Scholar]
  52. Zimmer H. G., Gerdes A. M., Lortet S., Mall G. Changes in heart function and cardiac cell size in rats with chronic myocardial infarction. J Mol Cell Cardiol. 1990 Nov;22(11):1231–1243. doi: 10.1016/0022-2828(90)90060-f. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES