Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Feb;95(2):768–773. doi: 10.1172/JCI117725

In vivo gene therapy for hyperlipidemia: phenotypic correction in Watanabe rabbits by hepatic delivery of the rabbit LDL receptor gene.

J Li 1, B Fang 1, R C Eisensmith 1, X H Li 1, I Nasonkin 1, Y C Lin-Lee 1, M P Mims 1, A Hughes 1, C D Montgomery 1, J D Roberts 1, et al.
PMCID: PMC295550  PMID: 7860759

Abstract

Elevations of plasma total or LDL cholesterol are major risk factors for cardiovascular disease. Efforts directed at preventing and treating cardiovascular disease have often focused on reducing the levels of these substances in the blood. The Watanabe Heritable Hyperlipidemic Rabbit, which has exceedingly high plasma cholesterol levels resulting from an LDL receptor deficiency, provides an excellent animal model for testing new treatments. A recombinant adenoviral vector containing the rabbit LDL receptor cDNA was administered to Watanabe rabbits. Plasma total cholesterol levels in the treated animals were reduced from 825.5 +/- 69.8 (mean +/- SD) to 247.3 +/- 61.5 mg/dl 6 d after infusion. These animals also demonstrated a 300-400% increase in plasma levels of HDL cholesterol and apo AI 10 d after treatment. As a result, the LDL:HDL ratio exhibited a dramatic decrease. Because only the rabbit LDL receptor gene was used for treatment, the results strongly suggest that the elevations of plasma HDL cholesterol and apo AI were secondary to a reduction in plasma total cholesterol in the treated animals. These results suggest an inverse relationship between plasma LDL and HDL cholesterol levels and imply that reduction of LDL cholesterol levels may have a beneficial effect on plasma HDL cholesterol.

Full text

PDF
768

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allain C. C., Poon L. S., Chan C. S., Richmond W., Fu P. C. Enzymatic determination of total serum cholesterol. Clin Chem. 1974 Apr;20(4):470–475. [PubMed] [Google Scholar]
  2. Bilheimer D. W., Goldstein J. L., Grundy S. M., Starzl T. E., Brown M. S. Liver transplantation to provide low-density-lipoprotein receptors and lower plasma cholesterol in a child with homozygous familial hypercholesterolemia. N Engl J Med. 1984 Dec 27;311(26):1658–1664. doi: 10.1056/NEJM198412273112603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burstein M., Scholnick H. R., Morfin R. Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions. J Lipid Res. 1970 Nov;11(6):583–595. [PubMed] [Google Scholar]
  4. Cristiano R. J., Smith L. C., Woo S. L. Hepatic gene therapy: adenovirus enhancement of receptor-mediated gene delivery and expression in primary hepatocytes. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2122–2126. doi: 10.1073/pnas.90.6.2122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Donnelly T. M., Kelsey S. F., Levine D. M., Parker T. S. Control of variance in experimental studies of hyperlipidemia using the WHHL rabbit. J Lipid Res. 1991 Jul;32(7):1089–1098. [PubMed] [Google Scholar]
  6. EPSTEIN F. H., BLOCK W. D., HAND E. A., FRANCIS T., Jr Familial hypercholesterolemia, xanthomatosis and coronary heart disease. Am J Med. 1959 Jan;26(1):39–53. doi: 10.1016/0002-9343(59)90325-0. [DOI] [PubMed] [Google Scholar]
  7. Endo A., Kuroda M., Tanzawa K. Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity. FEBS Lett. 1976 Dec 31;72(2):323–326. doi: 10.1016/0014-5793(76)80996-9. [DOI] [PubMed] [Google Scholar]
  8. Fang B., Eisensmith R. C., Li X. H., Finegold M. J., Shedlovsky A., Dove W., Woo S. L. Gene therapy for phenylketonuria: phenotypic correction in a genetically deficient mouse model by adenovirus-mediated hepatic gene transfer. Gene Ther. 1994 Jul;1(4):247–254. [PubMed] [Google Scholar]
  9. Goldstein J. L., Basu S. K., Brown M. S. Receptor-mediated endocytosis of low-density lipoprotein in cultured cells. Methods Enzymol. 1983;98:241–260. doi: 10.1016/0076-6879(83)98152-1. [DOI] [PubMed] [Google Scholar]
  10. Goldstein J. L., Brown M. S. Binding and degradation of low density lipoproteins by cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J Biol Chem. 1974 Aug 25;249(16):5153–5162. [PubMed] [Google Scholar]
  11. Goldstein J. L., Sobhani M. K., Faust J. R., Brown M. S. Heterozygous familial hypercholesterolemia: failure of normal allele to compensate for mutant allele at a regulated genetic locus. Cell. 1976 Oct;9(2):195–203. doi: 10.1016/0092-8674(76)90110-0. [DOI] [PubMed] [Google Scholar]
  12. Grossman M., Raper S. E., Kozarsky K., Stein E. A., Engelhardt J. F., Muller D., Lupien P. J., Wilson J. M. Successful ex vivo gene therapy directed to liver in a patient with familial hypercholesterolaemia. Nat Genet. 1994 Apr;6(4):335–341. doi: 10.1038/ng0494-335. [DOI] [PubMed] [Google Scholar]
  13. Grossman M., Raper S. E., Wilson J. M. Transplantation of genetically modified autologous hepatocytes into nonhuman primates: feasibility and short-term toxicity. Hum Gene Ther. 1992 Oct;3(5):501–510. doi: 10.1089/hum.1992.3.5-501. [DOI] [PubMed] [Google Scholar]
  14. HASHIM S. A., VANITALLIE T. B. CHOLESTYRAMINE RESIN THERAPY FOR HYPERCHOLESTEREMIA: CLINICAL AND METABOLIC STUDIES. JAMA. 1965 Apr 26;192:289–293. doi: 10.1001/jama.1965.03080170017004. [DOI] [PubMed] [Google Scholar]
  15. Ha Y. C., Barter P. J. Differences in plasma cholesteryl ester transfer activity in sixteen vertebrate species. Comp Biochem Physiol B. 1982;71(2):265–269. doi: 10.1016/0305-0491(82)90252-8. [DOI] [PubMed] [Google Scholar]
  16. Hayek T., Chajek-Shaul T., Walsh A., Agellon L. B., Moulin P., Tall A. R., Breslow J. L. An interaction between the human cholesteryl ester transfer protein (CETP) and apolipoprotein A-I genes in transgenic mice results in a profound CETP-mediated depression of high density lipoprotein cholesterol levels. J Clin Invest. 1992 Aug;90(2):505–510. doi: 10.1172/JCI115887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Inazu A., Koizumi J., Mabuchi H., Kajinami K., Takeda R. Enhanced cholesteryl ester transfer protein activities and abnormalities of high density lipoproteins in familial hypercholesterolemia. Horm Metab Res. 1992 Jun;24(6):284–288. doi: 10.1055/s-2007-1003314. [DOI] [PubMed] [Google Scholar]
  18. Ishibashi S., Brown M. S., Goldstein J. L., Gerard R. D., Hammer R. E., Herz J. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest. 1993 Aug;92(2):883–893. doi: 10.1172/JCI116663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jiao S., Cole T. G., Kitchens R. T., Pfleger B., Schonfeld G. Genetic heterogeneity of lipoproteins in inbred strains of mice: analysis by gel-permeation chromatography. Metabolism. 1990 Feb;39(2):155–160. doi: 10.1016/0026-0495(90)90069-o. [DOI] [PubMed] [Google Scholar]
  20. KHACHADURIAN A. K. THE INHERITANCE OF ESSENTIAL FAMILIAL HYPERCHOLESTEROLEMIA. Am J Med. 1964 Sep;37:402–407. doi: 10.1016/0002-9343(64)90196-2. [DOI] [PubMed] [Google Scholar]
  21. Kay M. A., Landen C. N., Rothenberg S. R., Taylor L. A., Leland F., Wiehle S., Fang B., Bellinger D., Finegold M., Thompson A. R. In vivo hepatic gene therapy: complete albeit transient correction of factor IX deficiency in hemophilia B dogs. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2353–2357. doi: 10.1073/pnas.91.6.2353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kay M. A., Li Q., Liu T. J., Leland F., Toman C., Finegold M., Woo S. L. Hepatic gene therapy: persistent expression of human alpha 1-antitrypsin in mice after direct gene delivery in vivo. Hum Gene Ther. 1992 Dec;3(6):641–647. doi: 10.1089/hum.1992.3.6-641. [DOI] [PubMed] [Google Scholar]
  23. Khachadurian A. K., Uthman S. M. Experiences with the homozygous cases of familial hypercholesterolemia. A report of 52 patients. Nutr Metab. 1973;15(1):132–140. doi: 10.1159/000175431. [DOI] [PubMed] [Google Scholar]
  24. Kovanen P. T., Bilheimer D. W., Goldstein J. L., Jaramillo J. J., Brown M. S. Regulatory role for hepatic low density lipoprotein receptors in vivo in the dog. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1194–1198. doi: 10.1073/pnas.78.2.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kozarsky K. F., McKinley D. R., Austin L. L., Raper S. E., Stratford-Perricaudet L. D., Wilson J. M. In vivo correction of low density lipoprotein receptor deficiency in the Watanabe heritable hyperlipidemic rabbit with recombinant adenoviruses. J Biol Chem. 1994 May 6;269(18):13695–13702. [PubMed] [Google Scholar]
  26. Li Q., Kay M. A., Finegold M., Stratford-Perricaudet L. D., Woo S. L. Assessment of recombinant adenoviral vectors for hepatic gene therapy. Hum Gene Ther. 1993 Aug;4(4):403–409. doi: 10.1089/hum.1993.4.4-403. [DOI] [PubMed] [Google Scholar]
  27. Lin R. C. Quantification of apolipoproteins in rat serum and in cultured rat hepatocytes by enzyme-linked immunosorbent assay. Anal Biochem. 1986 Apr;154(1):316–326. doi: 10.1016/0003-2697(86)90531-2. [DOI] [PubMed] [Google Scholar]
  28. Mims M. P., Soma M. R., Morrisett J. D. Effect of particle size and temperature on the conformation and physiological behavior of apolipoprotein E bound to model lipoprotein particles. Biochemistry. 1990 Jul 17;29(28):6639–6647. doi: 10.1021/bi00480a013. [DOI] [PubMed] [Google Scholar]
  29. Parker T. S., Gordon B. R., Saal S. D., Rubin A. L., Ahrens E. H., Jr Plasma high density lipoprotein is increased in man when low density lipoprotein (LDL) is lowered by LDL-pheresis. Proc Natl Acad Sci U S A. 1986 Feb;83(3):777–781. doi: 10.1073/pnas.83.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Saku K., Yamamoto K., Sakai T., Yanagida T., Hidaka K., Sasaki J., Arakawa K. Kinetics of HDL-apo A-I in the WHHL rabbit, an animal model of familial hypercholesterolemia. Atherosclerosis. 1989 Oct;79(2-3):225–230. doi: 10.1016/0021-9150(89)90127-5. [DOI] [PubMed] [Google Scholar]
  31. Son Y. S., Zilversmit D. B. Increased lipid transfer activities in hyperlipidemic rabbit plasma. Arteriosclerosis. 1986 May-Jun;6(3):345–351. [PubMed] [Google Scholar]
  32. Starzl T. E., Putnam C. W., Chase H. P., Porter K. A. Portacaval shunt in hyperlipoproteinaemia. Lancet. 1973 Oct 27;2(7835):940–944. doi: 10.1016/s0140-6736(73)92599-3. [DOI] [PubMed] [Google Scholar]
  33. Südhof T. C., Goldstein J. L., Brown M. S., Russell D. W. The LDL receptor gene: a mosaic of exons shared with different proteins. Science. 1985 May 17;228(4701):815–822. doi: 10.1126/science.2988123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Thompson G. R., Lowenthal R., Myant N. B. Plasma exchange in the management of homozygous familial hypercholesterolaemia. Lancet. 1975 May 31;1(7918):1208–1211. doi: 10.1016/s0140-6736(75)92193-5. [DOI] [PubMed] [Google Scholar]
  35. Vincent N., Ragot T., Gilgenkrantz H., Couton D., Chafey P., Grégoire A., Briand P., Kaplan J. C., Kahn A., Perricaudet M. Long-term correction of mouse dystrophic degeneration by adenovirus-mediated transfer of a minidystrophin gene. Nat Genet. 1993 Oct;5(2):130–134. doi: 10.1038/ng1093-130. [DOI] [PubMed] [Google Scholar]
  36. Watanabe Y. Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL-rabbit). Atherosclerosis. 1980 Jun;36(2):261–268. doi: 10.1016/0021-9150(80)90234-8. [DOI] [PubMed] [Google Scholar]
  37. Wilson J. M., Grossman M., Raper S. E., Baker J. R., Jr, Newton R. S., Thoene J. G. Ex vivo gene therapy of familial hypercholesterolemia. Hum Gene Ther. 1992 Apr;3(2):179–222. doi: 10.1089/hum.1992.3.2-179. [DOI] [PubMed] [Google Scholar]
  38. Wilson J. M., Grossman M., Wu C. H., Chowdhury N. R., Wu G. Y., Chowdhury J. R. Hepatocyte-directed gene transfer in vivo leads to transient improvement of hypercholesterolemia in low density lipoprotein receptor-deficient rabbits. J Biol Chem. 1992 Jan 15;267(2):963–967. [PubMed] [Google Scholar]
  39. Yamamoto T., Bishop R. W., Brown M. S., Goldstein J. L., Russell D. W. Deletion in cysteine-rich region of LDL receptor impedes transport to cell surface in WHHL rabbit. Science. 1986 Jun 6;232(4755):1230–1237. doi: 10.1126/science.3010466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zabner J., Couture L. A., Gregory R. J., Graham S. M., Smith A. E., Welsh M. J. Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell. 1993 Oct 22;75(2):207–216. doi: 10.1016/0092-8674(93)80063-k. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES