Abstract
We have studied the role of gap junction-mediated intercellular communication on the steroidogenic response of bovine (BAC) and human (HAC) adrenal fasciculo-reticularis cells in culture to corticotropin (ACTH). Indirect immunofluorescence analyses showed that intact human and bovine adreno-cortical tissue as well as HAC and BAC in culture expressed the gap junction protein connexin43 (also termed alpha 1 connexin). Both HAC and BAC were functionally coupled through gap junctions as demonstrated by microinjection of a low molecular mass fluorescent probe, Lucifer yellow. The cell-to-cell transfer of the probe was blocked by 18 alpha-glycyrrhetinic acid (GA), an inhibitor of gap junction-mediated intercellular communication. GA markedly decreased the steroidogenic response (cortisol production) of both HAC and BAC to low (10 pM) but not to high (5 nM) concentrations of ACTH. GA had no inhibitory effect on the steroidogenic response to 8 Br-cAMP (at either low or high concentrations) and did neither modify the binding of 125I-ACTH to its receptor nor the ACTH-induced cAMP production. BAC cultured at high or low cell densities (2.4 x 10(5) vs. 0.24 x 10(5) cells/cm2) exhibited distinct levels of intercellular communication and were differently responsive to sub-maximal ACTH concentrations. The ACTH ED50 values for cortisol production were 8.5 +/- 1.3 and 45 +/- 14 pM (P < 0.02) for BAC cultured at high and low density, respectively. In the presence of GA, there was a shift of the ACTH concentration-response curves in the two culture conditions. The ACTH ED50 of high density and low density cultured BAC increased 25- and 5-fold, respectively, and became similar (220 +/- 90 and 250 +/- 120 pM). These results demonstrate that gap junction-mediated communication between hormone-responsive and nonresponsive cells is one mechanism by which adrenal cells increase their responsiveness to low ACTH concentrations.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beyer E. C., Paul D. L., Goodenough D. A. Connexin family of gap junction proteins. J Membr Biol. 1990 Jul;116(3):187–194. doi: 10.1007/BF01868459. [DOI] [PubMed] [Google Scholar]
- Boitano S., Dirksen E. R., Sanderson M. J. Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science. 1992 Oct 9;258(5080):292–295. doi: 10.1126/science.1411526. [DOI] [PubMed] [Google Scholar]
- Buckley D. I., Ramachandran J. Characterization of corticotropin receptors on adrenocortical cells. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7431–7435. doi: 10.1073/pnas.78.12.7431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Canny B. J., Jia L. G., Leong D. A. Corticotropin-releasing factor, but not arginine vasopressin, stimulates concentration-dependent increases in ACTH secretion from a single corticotrope. Implications for intracellular signals in stimulus-secretion coupling. J Biol Chem. 1992 Apr 25;267(12):8325–8329. [PubMed] [Google Scholar]
- Catalano R. D., Stuve L., Ramachandran J. Characterization of corticotropin receptors in human adrenocortical cells. J Clin Endocrinol Metab. 1986 Feb;62(2):300–304. doi: 10.1210/jcem-62-2-300. [DOI] [PubMed] [Google Scholar]
- Charles A. C., Naus C. C., Zhu D., Kidder G. M., Dirksen E. R., Sanderson M. J. Intercellular calcium signaling via gap junctions in glioma cells. J Cell Biol. 1992 Jul;118(1):195–201. doi: 10.1083/jcb.118.1.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christ G. J., Moreno A. P., Melman A., Spray D. C. Gap junction-mediated intercellular diffusion of Ca2+ in cultured human corporal smooth muscle cells. Am J Physiol. 1992 Aug;263(2 Pt 1):C373–C383. doi: 10.1152/ajpcell.1992.263.2.C373. [DOI] [PubMed] [Google Scholar]
- Cornell-Bell A. H., Finkbeiner S. M., Cooper M. S., Smith S. J. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science. 1990 Jan 26;247(4941):470–473. doi: 10.1126/science.1967852. [DOI] [PubMed] [Google Scholar]
- Crowley S., Hindmarsh P. C., Holownia P., Honour J. W., Brook C. G. The use of low doses of ACTH in the investigation of adrenal function in man. J Endocrinol. 1991 Sep;130(3):475–479. doi: 10.1677/joe.0.1300475. [DOI] [PubMed] [Google Scholar]
- Davidson J. S., Baumgarten I. M. Glycyrrhetinic acid derivatives: a novel class of inhibitors of gap-junctional intercellular communication. Structure-activity relationships. J Pharmacol Exp Ther. 1988 Sep;246(3):1104–1107. [PubMed] [Google Scholar]
- Davidson J. S., Baumgarten I. M., Harley E. H. Reversible inhibition of intercellular junctional communication by glycyrrhetinic acid. Biochem Biophys Res Commun. 1986 Jan 14;134(1):29–36. doi: 10.1016/0006-291x(86)90522-x. [DOI] [PubMed] [Google Scholar]
- Dermietzel R., Hwang T. K., Spray D. S. The gap junction family: structure, function and chemistry. Anat Embryol (Berl) 1990;182(6):517–528. doi: 10.1007/BF00186458. [DOI] [PubMed] [Google Scholar]
- Doherty P. J., Tsao J., Schimmer B. P., Mumby M. C., Beavo J. A. Alteration of the regulatory subunit of type 1 cAMP-dependent protein kinase in mutant Y1 adrenal cells resistant to 8-bromoadenosine 3':5'-monophosphate. J Biol Chem. 1982 May 25;257(10):5877–5883. [PubMed] [Google Scholar]
- Fletcher W. H., Greenan J. R. Receptor mediated action without receptor occupancy. Endocrinology. 1985 Apr;116(4):1660–1662. doi: 10.1210/endo-116-4-1660. [DOI] [PubMed] [Google Scholar]
- Gallagher T. F., Yoshida K., Roffwarg H. D., Fukushima D. K., Weitzman E. D., Hellman L. ACTH and cortisol secretory patterns in man. J Clin Endocrinol Metab. 1973 Jun;36(6):1058–1068. doi: 10.1210/jcem-36-6-1058. [DOI] [PubMed] [Google Scholar]
- Gallo-Payet N., Escher E. Adrenocorticotropin receptors in rat adrenal glomerulosa cells. Endocrinology. 1985 Jul;117(1):38–46. doi: 10.1210/endo-117-1-38. [DOI] [PubMed] [Google Scholar]
- Goth M. I., Lyons C. E., Canny B. J., Thorner M. O. Pituitary adenylate cyclase activating polypeptide, growth hormone (GH)-releasing peptide and GH-releasing hormone stimulate GH release through distinct pituitary receptors. Endocrinology. 1992 Feb;130(2):939–944. doi: 10.1210/endo.130.2.1346381. [DOI] [PubMed] [Google Scholar]
- Holder J. W., Elmore E., Barrett J. C. Gap junction function and cancer. Cancer Res. 1993 Aug 1;53(15):3475–3485. [PubMed] [Google Scholar]
- Johnson E. I., Capponi A. M., Vallotton M. B. Cytosolic free calcium oscillates in single bovine adrenal glomerulosa cells in response to angiotensin II stimulation. J Endocrinol. 1989 Jul;122(1):391–402. doi: 10.1677/joe.0.1220391. [DOI] [PubMed] [Google Scholar]
- Johnson E. M., Theler J. M., Capponi A. M., Vallotton M. B. Characterization of oscillations in cytosolic free Ca2+ concentration and measurement of cytosolic Na+ concentration changes evoked by angiotensin II and vasopressin in individual rat aortic smooth muscle cells. Use of microfluorometry and digital imaging. J Biol Chem. 1991 Jul 5;266(19):12618–12626. [PubMed] [Google Scholar]
- Klemcke H. G., Pond W. G. Porcine adrenal adrenocorticotropic hormone receptors: characterization, changes during neonatal development, and response to a stressor. Endocrinology. 1991 May;128(5):2476–2488. doi: 10.1210/endo-128-5-2476. [DOI] [PubMed] [Google Scholar]
- Kumar N. M., Gilula N. B. Molecular biology and genetics of gap junction channels. Semin Cell Biol. 1992 Feb;3(1):3–16. doi: 10.1016/s1043-4682(10)80003-0. [DOI] [PubMed] [Google Scholar]
- Lambert F., Lammerant J., Kolanowski J. The stimulatory effect of corticotropin on cortisol biosynthetic pathway in guinea-pig adrenocortical cells. J Steroid Biochem. 1983 Jun;18(6):731–735. doi: 10.1016/0022-4731(83)90252-2. [DOI] [PubMed] [Google Scholar]
- Lawrence T. S., Beers W. H., Gilula N. B. Transmission of hormonal stimulation by cell-to-cell communication. Nature. 1978 Apr 6;272(5653):501–506. doi: 10.1038/272501a0. [DOI] [PubMed] [Google Scholar]
- Leong D. A., Thorner M. O. A potential code of luteinizing hormone-releasing hormone-induced calcium ion responses in the regulation of luteinizing hormone secretion among individual gonadotropes. J Biol Chem. 1991 May 15;266(14):9016–9022. [PubMed] [Google Scholar]
- Loewenstein W. R. Junctional intercellular communication and the control of growth. Biochim Biophys Acta. 1979 Feb 4;560(1):1–65. doi: 10.1016/0304-419x(79)90002-7. [DOI] [PubMed] [Google Scholar]
- Mazet J. L., Jarry T., Gros D., Mazet F. Voltage dependence of liver gap-junction channels reconstituted into liposomes and incorporated into planar bilayers. Eur J Biochem. 1992 Nov 15;210(1):249–256. doi: 10.1111/j.1432-1033.1992.tb17415.x. [DOI] [PubMed] [Google Scholar]
- Meda P., Bosco D., Chanson M., Giordano E., Vallar L., Wollheim C., Orci L. Rapid and reversible secretion changes during uncoupling of rat insulin-producing cells. J Clin Invest. 1990 Sep;86(3):759–768. doi: 10.1172/JCI114772. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meda P., Pepper M. S., Traub O., Willecke K., Gros D., Beyer E., Nicholson B., Paul D., Orci L. Differential expression of gap junction connexins in endocrine and exocrine glands. Endocrinology. 1993 Nov;133(5):2371–2378. doi: 10.1210/endo.133.5.8404689. [DOI] [PubMed] [Google Scholar]
- Munari-Silem Y., Audebet C., Rousset B. Hormonal control of cell to cell communication: regulation by thyrotropin of the gap junction-mediated dye transfer between thyroid cells. Endocrinology. 1991 Jun;128(6):3299–3309. doi: 10.1210/endo-128-6-3299. [DOI] [PubMed] [Google Scholar]
- Murray S. A., Fletcher W. H. Hormone-induced intercellular signal transfer dissociates cyclic AMP-dependent protein kinase. J Cell Biol. 1984 May;98(5):1710–1719. doi: 10.1083/jcb.98.5.1710. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osipchuk Y., Cahalan M. Cell-to-cell spread of calcium signals mediated by ATP receptors in mast cells. Nature. 1992 Sep 17;359(6392):241–244. doi: 10.1038/359241a0. [DOI] [PubMed] [Google Scholar]
- Penhoat A., Jaillard C., Crozat A., Saez J. M. Regulation of angiotensin II receptors and steroidogenic responsiveness in cultured bovine fasciculata and glomerulosa adrenal cells. Eur J Biochem. 1988 Feb 15;172(1):247–254. doi: 10.1111/j.1432-1033.1988.tb13880.x. [DOI] [PubMed] [Google Scholar]
- Penhoat A., Jaillard C., Saez J. M. Corticotropin positively regulates its own receptors and cAMP response in cultured bovine adrenal cells. Proc Natl Acad Sci U S A. 1989 Jul;86(13):4978–4981. doi: 10.1073/pnas.86.13.4978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peytremann A., Nicholson W. E., Brown R. D., Liddle G. W., Hardman J. G. Comparative effects of angiotensin and ACTH on cyclic AMP and steroidogenesis in isolated bovine adrenal cells. J Clin Invest. 1973 Apr;52(4):835–842. doi: 10.1172/JCI107247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pino A. M., Inostroza H., Valladares L. E. Detection of testosterone secretion from individual rat Leydig cells. J Steroid Biochem Mol Biol. 1992 Feb;41(2):167–170. doi: 10.1016/0960-0760(92)90044-j. [DOI] [PubMed] [Google Scholar]
- Rainey W. E., Viard I., Mason J. I., Cochet C., Chambaz E. M., Saez J. M. Effects of transforming growth factor beta on ovine adrenocortical cells. Mol Cell Endocrinol. 1988 Dec;60(2-3):189–198. doi: 10.1016/0303-7207(88)90178-5. [DOI] [PubMed] [Google Scholar]
- Saez J. M., Evain D., Gallet D. Role of cyclic AMP and protein kinase on the steroidogenic action of ACTH, prostaglandin E1 and dibutyryl cyclic AMP in normal adrenal cells and adrenal tumor cells from humans. J Cyclic Nucleotide Res. 1978 Aug;4(4):311–321. [PubMed] [Google Scholar]
- Saez J. M., Morera A. M., Dazord A. Mediators of the effects of ACTH on adrenal cells. Adv Cyclic Nucleotide Res. 1981;14:563–579. [PubMed] [Google Scholar]
- Sala G. B., Hayashi K., Catt K. J., Dufau M. L. Adrenocorticotropin action in isolated adrenal cells. The intermediate role of cyclic AMP in stimulation of corticosterone synthesis. J Biol Chem. 1979 May 25;254(10):3861–3865. [PubMed] [Google Scholar]
- Sandberg K., Ji H., Iida T., Catt K. J. Intercellular communication between follicular angiotensin receptors and Xenopus laevis oocytes: medication by an inositol 1,4,5-trisphosphate-dependent mechanism. J Cell Biol. 1992 Apr;117(1):157–167. doi: 10.1083/jcb.117.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sayers G., Beall R. J., Seelig S. Isolated adrenal cells: adrenocorticotropic hormone, calcium, steroidogenesis, and cyclic adenosine monophosphate. Science. 1972 Mar 10;175(4026):1131–1133. doi: 10.1126/science.175.4026.1131. [DOI] [PubMed] [Google Scholar]
- Schimmer B. P. Cyclic nucleotides in hormonal regulation of adrenocortical function. Adv Cyclic Nucleotide Res. 1980;13:181–214. [PubMed] [Google Scholar]
- Spray D. C., Burt J. M. Structure-activity relations of the cardiac gap junction channel. Am J Physiol. 1990 Feb;258(2 Pt 1):C195–C205. doi: 10.1152/ajpcell.1990.258.2.C195. [DOI] [PubMed] [Google Scholar]
- Stagg R. B., Fletcher W. H. The hormone-induced regulation of contact-dependent cell-cell communication by phosphorylation. Endocr Rev. 1990 May;11(2):302–325. doi: 10.1210/edrv-11-2-302. [DOI] [PubMed] [Google Scholar]
- Stewart W. W. Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell. 1978 Jul;14(3):741–759. doi: 10.1016/0092-8674(78)90256-8. [DOI] [PubMed] [Google Scholar]
- Sáez J. C., Connor J. A., Spray D. C., Bennett M. V. Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-trisphosphate, and to calcium ions. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2708–2712. doi: 10.1073/pnas.86.8.2708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Traub O., Look J., Dermietzel R., Brümmer F., Hülser D., Willecke K. Comparative characterization of the 21-kD and 26-kD gap junction proteins in murine liver and cultured hepatocytes. J Cell Biol. 1989 Mar;108(3):1039–1051. doi: 10.1083/jcb.108.3.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trosko J. E., Madhukar B. V., Chang C. C. Endogenous and exogenous modulation of gap junctional intercellular communication: toxicological and pharmacological implications. Life Sci. 1993;53(1):1–19. doi: 10.1016/0024-3205(93)90606-4. [DOI] [PubMed] [Google Scholar]
- Tsien R. W., Weingart R. Inotropic effect of cyclic AMP in calf ventricular muscle studied by a cut end method. J Physiol. 1976 Aug;260(1):117–141. doi: 10.1113/jphysiol.1976.sp011507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Viard I., Rainey W. E., Capponi A. M., Begeot M., Saez J. M. Ovine adrenal fasciculata cells contain angiotensin-II receptors coupled to intracellular effectors but are resistant to the steroidogenic effects of this hormone. Endocrinology. 1990 Nov;127(5):2071–2078. doi: 10.1210/endo-127-5-2071. [DOI] [PubMed] [Google Scholar]
- Willecke K., Hennemann H., Dahl E., Jungbluth S., Heynkes R. The diversity of connexin genes encoding gap junctional proteins. Eur J Cell Biol. 1991 Oct;56(1):1–7. [PubMed] [Google Scholar]
- Wong M., Krolczyk A. J., Schimmer B. P. The causal relationship between mutations in cAMP-dependent protein kinase and the loss of adrenocorticotropin-regulated adrenocortical functions. Mol Endocrinol. 1992 Oct;6(10):1614–1624. doi: 10.1210/mend.6.10.1333050. [DOI] [PubMed] [Google Scholar]
- Zhang J. T., Nicholson B. J. Sequence and tissue distribution of a second protein of hepatic gap junctions, Cx26, as deduced from its cDNA. J Cell Biol. 1989 Dec;109(6 Pt 2):3391–3401. doi: 10.1083/jcb.109.6.3391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu D., Kidder G. M., Caveney S., Naus C. C. Growth retardation in glioma cells cocultured with cells overexpressing a gap junction protein. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10218–10221. doi: 10.1073/pnas.89.21.10218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- el Aoumari A., Fromaget C., Dupont E., Reggio H., Durbec P., Briand J. P., Böller K., Kreitman B., Gros D. Conservation of a cytoplasmic carboxy-terminal domain of connexin 43, a gap junctional protein, in mammal heart and brain. J Membr Biol. 1990 May;115(3):229–240. doi: 10.1007/BF01868638. [DOI] [PubMed] [Google Scholar]