Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Apr;95(4):1519–1527. doi: 10.1172/JCI117824

Effects of angiotensin II generated by an angiotensin converting enzyme-independent pathway on left ventricular performance in the conscious baboon.

B D Hoit 1, Y Shao 1, A Kinoshita 1, M Gabel 1, A Husain 1, R A Walsh 1
PMCID: PMC295635  PMID: 7706457

Abstract

Human chymase is a serine proteinase that converts angiotensin (Ang) I to Ang II independent of angiotensin converting enzyme (ACE) in vitro. The effects of chymase on systemic hemodynamics and left ventricular function in vivo were studied in nine conscious baboons instrumented with a LV micromanometer and LV minor axis and wall thickness sonomicrometer crystal pairs. Measurements were made at baseline and after [Pro11DAla12] Ang I, a specific substrate for human chymase, was given in consecutive fashion as a 0.1 mg bolus, an hour-long intravenous infusion of 5 mg, a 3 mg bolus, and after 5 mg of an Ang II receptor antagonist. [Pro11DAla12]Ang I significantly increased LV systolic and diastolic pressure, LV end-diastolic and end systolic dimensions and the time constant of LV relaxation and significantly decreased LV fractional shortening and wall thickening. Administration of a specific Ang II receptor antagonist reversed all the hemodynamic changes. In separate studies, similar results were obtained in six of the baboons with ACE blockade (20 mg, intravenous captopril). Post-mortem studies indicated that chymase-like activity was widely distributed in multiple tissues. Thus, in primates, Ang I is converted into Ang II by an enzyme with chymase-like activity. This study provides the first in vivo evidence of an ACE-independent pathway for Ang II production.

Full text

PDF
1519

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Applegate R. J., Walsh R. A., O'Rourke R. A. Effects of nifedipine on diastolic function during brief periods of flow-limiting ischemia in the conscious dog. Circulation. 1987 Dec;76(6):1409–1421. doi: 10.1161/01.cir.76.6.1409. [DOI] [PubMed] [Google Scholar]
  2. Baker K. M., Booz G. W., Dostal D. E. Cardiac actions of angiotensin II: Role of an intracardiac renin-angiotensin system. Annu Rev Physiol. 1992;54:227–241. doi: 10.1146/annurev.ph.54.030192.001303. [DOI] [PubMed] [Google Scholar]
  3. Baker K. M., Singer H. A. Identification and characterization of guinea pig angiotensin II ventricular and atrial receptors: coupling to inositol phosphate production. Circ Res. 1988 May;62(5):896–904. doi: 10.1161/01.res.62.5.896. [DOI] [PubMed] [Google Scholar]
  4. Dempsey P. J., McCallum Z. T., Kent K. M., Cooper T. Direct myocardial effects of angiotensin II. Am J Physiol. 1971 Feb;220(2):477–481. doi: 10.1152/ajplegacy.1971.220.2.477. [DOI] [PubMed] [Google Scholar]
  5. Erdös E. G. Angiotensin I converting enzyme and the changes in our concepts through the years. Lewis K. Dahl memorial lecture. Hypertension. 1990 Oct;16(4):363–370. doi: 10.1161/01.hyp.16.4.363. [DOI] [PubMed] [Google Scholar]
  6. Erdös E. G., Skidgel R. A. Structure and functions of human angiotensin I converting enzyme (kininase II). Biochem Soc Trans. 1985 Feb;13(1):42–44. doi: 10.1042/bst0130042. [DOI] [PubMed] [Google Scholar]
  7. FOWLER N. O., HOLMES J. C. CORONARY AND MYOCARDIAL ACTIONS OF ANGIOTENSIN. Circ Res. 1964 Mar;14:191–201. doi: 10.1161/01.res.14.3.191. [DOI] [PubMed] [Google Scholar]
  8. Farr W. C., Grupp G. Ganglionic stimulation: mechanism of the positive inotropic and chronotropic effects of angiotensin. J Pharmacol Exp Ther. 1971 Apr;177(1):48–55. [PubMed] [Google Scholar]
  9. Frank M. J., Nadimi M., Casanegra P., Stein P., Pekaar R. Effect of angiotensin on myocardial function. Am J Physiol. 1970 May;218(5):1267–1272. doi: 10.1152/ajplegacy.1970.218.5.1267. [DOI] [PubMed] [Google Scholar]
  10. Freer R. J., Pappano A. J., Peach M. J., Bing K. T., McLean M. J., Vogel S., Sperelakis N. Mechanism for the postive inotropic effect of angiotensin II on isolated cardiac muscle. Circ Res. 1976 Aug;39(2):178–183. doi: 10.1161/01.res.39.2.178. [DOI] [PubMed] [Google Scholar]
  11. Gaasch W. H., Blaustein A. S., Andrias C. W., Donahue R. P., Avitall B. Myocardial relaxation. II. Hemodynamic determinants of rate of left ventricular isovolumic pressure decline. Am J Physiol. 1980 Jul;239(1):H1–H6. doi: 10.1152/ajpheart.1980.239.1.H1. [DOI] [PubMed] [Google Scholar]
  12. Hirsch A. T., Talsness C. E., Schunkert H., Paul M., Dzau V. J. Tissue-specific activation of cardiac angiotensin converting enzyme in experimental heart failure. Circ Res. 1991 Aug;69(2):475–482. doi: 10.1161/01.res.69.2.475. [DOI] [PubMed] [Google Scholar]
  13. Holubarsch C., Hasenfuss G., Schmidt-Schweda S., Knorr A., Pieske B., Ruf T., Fasol R., Just H. Angiotensin I and II exert inotropic effects in atrial but not in ventricular human myocardium. An in vitro study under physiological experimental conditions. Circulation. 1993 Sep;88(3):1228–1237. doi: 10.1161/01.cir.88.3.1228. [DOI] [PubMed] [Google Scholar]
  14. Kinoshita A., Urata H., Bumpus F. M., Husain A. Measurement of angiotensin I converting enzyme inhibition in the heart. Circ Res. 1993 Jul;73(1):51–60. doi: 10.1161/01.res.73.1.51. [DOI] [PubMed] [Google Scholar]
  15. Kinoshita A., Urata H., Bumpus F. M., Husain A. Multiple determinants for the high substrate specificity of an angiotensin II-forming chymase from the human heart. J Biol Chem. 1991 Oct 15;266(29):19192–19197. [PubMed] [Google Scholar]
  16. Kobayashi M., Furukawa Y., Chiba S. Positive chronotropic and inotropic effects of angiotensin II in the dog heart. Eur J Pharmacol. 1978 Jul 1;50(1):17–25. doi: 10.1016/0014-2999(78)90249-2. [DOI] [PubMed] [Google Scholar]
  17. Moravec C. S., Schluchter M. D., Paranandi L., Czerska B., Stewart R. W., Rosenkranz E., Bond M. Inotropic effects of angiotensin II on human cardiac muscle in vitro. Circulation. 1990 Dec;82(6):1973–1984. doi: 10.1161/01.cir.82.6.1973. [DOI] [PubMed] [Google Scholar]
  18. Naftilan A. J., Pratt R. E., Eldridge C. S., Lin H. L., Dzau V. J. Angiotensin II induces c-fos expression in smooth muscle via transcriptional control. Hypertension. 1989 Jun;13(6 Pt 2):706–711. doi: 10.1161/01.hyp.13.6.706. [DOI] [PubMed] [Google Scholar]
  19. Neyses L., Vetter H. Action of atrial natriuretic peptide and angiotensin II on the myocardium: studies in isolated rat ventricular cardiomyocytes. Biochem Biophys Res Commun. 1989 Sep 29;163(3):1435–1443. doi: 10.1016/0006-291x(89)91139-x. [DOI] [PubMed] [Google Scholar]
  20. Okunishi H., Miyazaki M., Toda N. Evidence for a putatively new angiotensin II-generating enzyme in the vascular wall. J Hypertens. 1984 Jun;2(3):277–284. [PubMed] [Google Scholar]
  21. Peach M. J. Renin-angiotensin system: biochemistry and mechanisms of action. Physiol Rev. 1977 Apr;57(2):313–370. doi: 10.1152/physrev.1977.57.2.313. [DOI] [PubMed] [Google Scholar]
  22. Schunkert H., Dzau V. J., Tang S. S., Hirsch A. T., Apstein C. S., Lorell B. H. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation. J Clin Invest. 1990 Dec;86(6):1913–1920. doi: 10.1172/JCI114924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sporn L. A., Marder V. J., Wagner D. D. Differing polarity of the constitutive and regulated secretory pathways for von Willebrand factor in endothelial cells. J Cell Biol. 1989 Apr;108(4):1283–1289. doi: 10.1083/jcb.108.4.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Starling M. R., Montgomery D. G., Mancini G. B., Walsh R. A. Load independence of the rate of isovolumic relaxation in man. Circulation. 1987 Dec;76(6):1274–1281. doi: 10.1161/01.cir.76.6.1274. [DOI] [PubMed] [Google Scholar]
  25. Tarazi R. C., Fouad F. M., Ceimo J. K., Bravo E. L. Renin, aldosterone and cardiac decompensation: studies with an oral converting enzyme inhibitor in heart failure. Am J Cardiol. 1979 Oct 22;44(5):1013–1018. doi: 10.1016/0002-9149(79)90237-6. [DOI] [PubMed] [Google Scholar]
  26. Urata H., Boehm K. D., Philip A., Kinoshita A., Gabrovsek J., Bumpus F. M., Husain A. Cellular localization and regional distribution of an angiotensin II-forming chymase in the heart. J Clin Invest. 1993 Apr;91(4):1269–1281. doi: 10.1172/JCI116325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Urata H., Healy B., Stewart R. W., Bumpus F. M., Husain A. Angiotensin II receptors in normal and failing human hearts. J Clin Endocrinol Metab. 1989 Jul;69(1):54–66. doi: 10.1210/jcem-69-1-54. [DOI] [PubMed] [Google Scholar]
  28. Urata H., Healy B., Stewart R. W., Bumpus F. M., Husain A. Angiotensin II-forming pathways in normal and failing human hearts. Circ Res. 1990 Apr;66(4):883–890. doi: 10.1161/01.res.66.4.883. [DOI] [PubMed] [Google Scholar]
  29. Urata H., Kinoshita A., Misono K. S., Bumpus F. M., Husain A. Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem. 1990 Dec 25;265(36):22348–22357. [PubMed] [Google Scholar]
  30. Urata H., Kinoshita A., Perez D. M., Misono K. S., Bumpus F. M., Graham R. M., Husain A. Cloning of the gene and cDNA for human heart chymase. J Biol Chem. 1991 Sep 15;266(26):17173–17179. [PubMed] [Google Scholar]
  31. Véniant M., Clozel J. P., Hess P., Fischli W. Effects of renin-angiotensin system blockade in guinea pigs. Hypertension. 1992 Mar;19(3):255–262. doi: 10.1161/01.hyp.19.3.255. [DOI] [PubMed] [Google Scholar]
  32. Walsh R. A., O'Rourke R. A. Direct and indirect effects of calcium entry blocking agents on isovolumic left ventricular relaxation in conscious dogs. J Clin Invest. 1985 May;75(5):1426–1434. doi: 10.1172/JCI111844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Weiss J. L., Frederiksen J. W., Weisfeldt M. L. Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J Clin Invest. 1976 Sep;58(3):751–760. doi: 10.1172/JCI108522. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES