Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Apr;95(4):1528–1538. doi: 10.1172/JCI117825

Distinctive anatomical patterns of gene expression for cGMP-inhibited cyclic nucleotide phosphodiesterases.

R R Reinhardt 1, E Chin 1, J Zhou 1, M Taira 1, T Murata 1, V C Manganiello 1, C A Bondy 1
PMCID: PMC295636  PMID: 7706458

Abstract

Type III cGMP-inhibited phosphodiesterases (PDE3s) play important roles in hormonal regulation of lipolysis, platelet aggregation, myocardial contractility, and smooth muscle relaxation. We have recently characterized two PDE3 subtypes (PDE3A and PDE3B) as products of distinct but related genes. To elucidate their biological roles, in this study we compare cellular patterns of gene expression for these two enzymes during rat embryonic and postnatal development using in situ hybridization. PDE3B [corrected] mRNA is abundant in adipose tissue and is also expressed in hepatocytes throughout development. This mRNA is also highly abundant in embryonic neuroepithelium including the neural retina, but expression is greatly reduced in the mature nervous system. Finally, PDE3B [corrected] mRNA is localized in spermatocytes and renal collecting duct epithelium in adult rats. PDE3B mRNA is highly expressed in the cardiovascular system, including myocardium and arterial and venous smooth muscle, throughout development. It is also abundant in bronchial, genitourinary and gastrointestinal smooth muscle and epithelium, megakaryocytes, and oocytes. PDE3A [corrected] mRNA demonstrates a complex, developmentally regulated pattern of gene expression in the central nervous system. In summary, the two different PDE3s show distinctive tissue-specific patterns of gene expression suggesting that PDE3B [corrected] is involved in hormonal regulation of lipolysis and glycogenolysis, while regulation of myocardial and smooth muscle contractility appears to be a function of PDE3A [corrected]. In addition, the present findings suggest previously unsuspected roles for these enzymes in gametogenesis and neural development.

Full text

PDF
1528

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez R., Banerjee G. L., Bruno J. J., Jones G. L., Littschwager K., Strosberg A. M., Venuti M. C. A potent and selective inhibitor of cyclic AMP phosphodiesterase with potential cardiotonic and antithrombotic properties. Mol Pharmacol. 1986 Jun;29(6):554–560. [PubMed] [Google Scholar]
  2. Beltman J., Sonnenburg W. K., Beavo J. A. The role of protein phosphorylation in the regulation of cyclic nucleotide phosphodiesterases. Mol Cell Biochem. 1993 Nov;127-128:239–253. doi: 10.1007/BF01076775. [DOI] [PubMed] [Google Scholar]
  3. Bentley J. K., Beavo J. A. Regulation and function of cyclic nucleotides. Curr Opin Cell Biol. 1992 Apr;4(2):233–240. doi: 10.1016/0955-0674(92)90038-e. [DOI] [PubMed] [Google Scholar]
  4. Bentley J. K., Kadlecek A., Sherbert C. H., Seger D., Sonnenburg W. K., Charbonneau H., Novack J. P., Beavo J. A. Molecular cloning of cDNA encoding a "63"-kDa calmodulin-stimulated phosphodiesterase from bovine brain. J Biol Chem. 1992 Sep 15;267(26):18676–18682. [PubMed] [Google Scholar]
  5. Bolger G., Michaeli T., Martins T., St John T., Steiner B., Rodgers L., Riggs M., Wigler M., Ferguson K. A family of human phosphodiesterases homologous to the dunce learning and memory gene product of Drosophila melanogaster are potential targets for antidepressant drugs. Mol Cell Biol. 1993 Oct;13(10):6558–6571. doi: 10.1128/mcb.13.10.6558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boyes S., Loten E. G. Insulin and lipolytic hormones stimulate the same phosphodiesterase isoform in rat adipose tissue. Biochem Biophys Res Commun. 1989 Jul 31;162(2):814–820. doi: 10.1016/0006-291x(89)92383-8. [DOI] [PubMed] [Google Scholar]
  7. Boyes S., Loten E. G. Purification of an insulin-sensitive cyclic AMP phosphodiesterase from rat liver. Eur J Biochem. 1988 Jun 1;174(2):303–309. doi: 10.1111/j.1432-1033.1988.tb14098.x. [DOI] [PubMed] [Google Scholar]
  8. Colucci W. S., Wright R. F., Braunwald E. New positive inotropic agents in the treatment of congestive heart failure. Mechanisms of action and recent clinical developments. 2. N Engl J Med. 1986 Feb 6;314(6):349–358. doi: 10.1056/NEJM198602063140605. [DOI] [PubMed] [Google Scholar]
  9. Conti M., Jin S. L., Monaco L., Repaske D. R., Swinnen J. V. Hormonal regulation of cyclic nucleotide phosphodiesterases. Endocr Rev. 1991 Aug;12(3):218–234. doi: 10.1210/edrv-12-3-218. [DOI] [PubMed] [Google Scholar]
  10. Degerman E., Belfrage P., Newman A. H., Rice K. C., Manganiello V. C. Purification of the putative hormone-sensitive cyclic AMP phosphodiesterase from rat adipose tissue using a derivative of cilostamide as a novel affinity ligand. J Biol Chem. 1987 Apr 25;262(12):5797–5807. [PubMed] [Google Scholar]
  11. Grant P. G., Colman R. W. Purification and characterization of a human platelet cyclic nucleotide phosphodiesterase. Biochemistry. 1984 Apr 10;23(8):1801–1807. doi: 10.1021/bi00303a034. [DOI] [PubMed] [Google Scholar]
  12. Harris A. L., Connell M. J., Ferguson E. W., Wallace A. M., Gordon R. J., Pagani E. D., Silver P. J. Role of low Km cyclic AMP phosphodiesterase inhibition in tracheal relaxation and bronchodilation in the guinea pig. J Pharmacol Exp Ther. 1989 Oct;251(1):199–206. [PubMed] [Google Scholar]
  13. Harrison S. A., Reifsnyder D. H., Gallis B., Cadd G. G., Beavo J. A. Isolation and characterization of bovine cardiac muscle cGMP-inhibited phosphodiesterase: a receptor for new cardiotonic drugs. Mol Pharmacol. 1986 May;29(5):506–514. [PubMed] [Google Scholar]
  14. Jasin M., Regan L., Schimmel P. Two mutations in the dispensable part of alanine tRNA synthetase which affect the catalytic activity. J Biol Chem. 1985 Feb 25;260(4):2226–2230. [PubMed] [Google Scholar]
  15. Katano Y., Endoh M. Effects of a cardiotonic quinolinone derivative Y-20487 on the isoproterenol-induced positive inotropic action and cyclic AMP accumulation in rat ventricular myocardium: comparison with rolipram, Ro 20-1724, milrinone, and isobutylmethylxanthine. J Cardiovasc Pharmacol. 1992;20(5):715–722. [PubMed] [Google Scholar]
  16. Kauffman R. F., Crowe V. G., Utterback B. G., Robertson D. W. LY195115: a potent, selective inhibitor of cyclic nucleotide phosphodiesterase located in the sarcoplasmic reticulum. Mol Pharmacol. 1986 Dec;30(6):609–616. [PubMed] [Google Scholar]
  17. Kithas P. A., Artman M., Thompson W. J., Strada S. J. Subcellular distribution of high-affinity type IV cyclic AMP phosphodiesterase activities in rabbit ventricular myocardium: relations to post-natal maturation. J Mol Cell Cardiol. 1989 May;21(5):507–517. doi: 10.1016/0022-2828(89)90790-6. [DOI] [PubMed] [Google Scholar]
  18. Kono T., Robinson F. W., Sarver J. A. Insulin-sensitive phosphodiesterase. Its localization, hormonal stimulation, and oxidative stabilization. J Biol Chem. 1975 Oct 10;250(19):7826–7835. [PubMed] [Google Scholar]
  19. LeBon T. R., Kasuya J., Paxton R. J., Belfrage P., Hockman S., Manganiello V. C., Fujita Yamaguchi Y. Purification and characterization of guanosine 3',5'-monophosphate-inhibited low K(m) adenosine 3',5'-monophosphate phosphodiesterase from human placental cytosolic fractions. Endocrinology. 1992 Jun;130(6):3265–3274. doi: 10.1210/endo.130.6.1317779. [DOI] [PubMed] [Google Scholar]
  20. Loten E. G., Assimacopoulos-Jeannet F. D., Exton J. H., Park C. R. Stimulation of a low Km phosphodiesterase from liver by insulin and glucagon. J Biol Chem. 1978 Feb 10;253(3):746–757. [PubMed] [Google Scholar]
  21. Loten E. G., Sneyd J. G. An effect of insulin on adipose-tissue adenosine 3':5'-cyclic monophosphate phosphodiesterase. Biochem J. 1970 Nov;120(1):187–193. doi: 10.1042/bj1200187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ludmer P. L., Wright R. F., Arnold J. M., Ganz P., Braunwald E., Colucci W. S. Separation of the direct myocardial and vasodilator actions of milrinone administered by an intracoronary infusion technique. Circulation. 1986 Jan;73(1):130–137. doi: 10.1161/01.cir.73.1.130. [DOI] [PubMed] [Google Scholar]
  23. Lugnier C., Muller B., Le Bec A., Beaudry C., Rousseau E. Characterization of indolidan- and rolipram-sensitive cyclic nucleotide phosphodiesterases in canine and human cardiac microsomal fractions. J Pharmacol Exp Ther. 1993 Jun;265(3):1142–1151. [PubMed] [Google Scholar]
  24. MacFarland R. T., Zelus B. D., Beavo J. A. High concentrations of a cGMP-stimulated phosphodiesterase mediate ANP-induced decreases in cAMP and steroidogenesis in adrenal glomerulosa cells. J Biol Chem. 1991 Jan 5;266(1):136–142. [PubMed] [Google Scholar]
  25. Macphee C. H., Harrison S. A., Beavo J. A. Immunological identification of the major platelet low-Km cAMP phosphodiesterase: probable target for anti-thrombotic agents. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6660–6663. doi: 10.1073/pnas.83.17.6660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Manganiello V. C., Smith C. J., Degerman E., Vasta V., Tornqvist H., Belfrage P. Molecular mechanisms involved in the antilipolytic action of insulin: phosphorylation and activation of a particulate adipocyte cAMP phosphodiesterase. Adv Exp Med Biol. 1991;293:239–248. doi: 10.1007/978-1-4684-5949-4_22. [DOI] [PubMed] [Google Scholar]
  27. Marcoz P., Prigent A. F., Lagarde M., Nemoz G. Modulation of rat thymocyte proliferative response through the inhibition of different cyclic nucleotide phosphodiesterase isoforms by means of selective inhibitors and cGMP-elevating agents. Mol Pharmacol. 1993 Nov;44(5):1027–1035. [PubMed] [Google Scholar]
  28. Maurice D. H., Haslam R. J. Molecular basis of the synergistic inhibition of platelet function by nitrovasodilators and activators of adenylate cyclase: inhibition of cyclic AMP breakdown by cyclic GMP. Mol Pharmacol. 1990 May;37(5):671–681. [PubMed] [Google Scholar]
  29. Meacci E., Taira M., Moos M., Jr, Smith C. J., Movsesian M. A., Degerman E., Belfrage P., Manganiello V. Molecular cloning and expression of human myocardial cGMP-inhibited cAMP phosphodiesterase. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3721–3725. doi: 10.1073/pnas.89.9.3721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Michaeli T., Bloom T. J., Martins T., Loughney K., Ferguson K., Riggs M., Rodgers L., Beavo J. A., Wigler M. Isolation and characterization of a previously undetected human cAMP phosphodiesterase by complementation of cAMP phosphodiesterase-deficient Saccharomyces cerevisiae. J Biol Chem. 1993 Jun 15;268(17):12925–12932. [PubMed] [Google Scholar]
  31. Polli J. W., Kincaid R. L. Expression of a calmodulin-dependent phosphodiesterase isoform (PDE1B1) correlates with brain regions having extensive dopaminergic innervation. J Neurosci. 1994 Mar;14(3 Pt 1):1251–1261. doi: 10.1523/JNEUROSCI.14-03-01251.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pyne N. J., Cooper M. E., Houslay M. D. The insulin- and glucagon-stimulated 'dense-vesicle' high-affinity cyclic AMP phosphodiesterase from rat liver. Purification, characterization and inhibitor sensitivity. Biochem J. 1987 Feb 15;242(1):33–42. doi: 10.1042/bj2420033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rascón A., Lindgren S., Stavenow L., Belfrage P., Andersson K. E., Manganiello V. C., Degerman E. Purification and properties of the cGMP-inhibited cAMP phosphodiesterase from bovine aortic smooth muscle. Biochim Biophys Acta. 1992 Mar 16;1134(2):149–156. doi: 10.1016/0167-4889(92)90038-d. [DOI] [PubMed] [Google Scholar]
  34. Robicsek S. A., Blanchard D. K., Djeu J. Y., Krzanowski J. J., Szentivanyi A., Polson J. B. Multiple high-affinity cAMP-phosphodiesterases in human T-lymphocytes. Biochem Pharmacol. 1991 Jul 25;42(4):869–877. doi: 10.1016/0006-2952(91)90047-9. [DOI] [PubMed] [Google Scholar]
  35. Sadler S. E., Maller J. L. A similar pool of cyclic AMP phosphodiesterase in Xenopus oocytes is stimulated by insulin, insulin-like growth factor 1, and [Val12,Thr59]Ha-ras protein. J Biol Chem. 1989 Jan 15;264(2):856–861. [PubMed] [Google Scholar]
  36. Sadler S. E. Type III phosphodiesterase plays a necessary role in the growth-promoting actions of insulin, insulin-like growth factor-I, and Ha p21ras in Xenopus laevis oocytes. Mol Endocrinol. 1991 Dec;5(12):1939–1946. doi: 10.1210/mend-5-12-1939. [DOI] [PubMed] [Google Scholar]
  37. Schmitz-Peiffer C., Reeves M. L., Denton R. M. Characterization of the cyclic nucleotide phosphodiesterase isoenzymes present in rat epididymal fat cells. Cell Signal. 1992 Jan;4(1):37–49. doi: 10.1016/0898-6568(92)90006-t. [DOI] [PubMed] [Google Scholar]
  38. Silver P. J., Lepore R. E., O'Connor B., Lemp B. M., Hamel L. T., Bentley R. G., Harris A. L. Inhibition of the low Km cyclic AMP phosphodiesterase and activation of the cyclic AMP system in vascular smooth muscle by milrinone. J Pharmacol Exp Ther. 1988 Oct;247(1):34–42. [PubMed] [Google Scholar]
  39. Simpson A. W., Reeves M. L., Rink T. J. Effects of SK&F 94120, an inhibitor of cyclic nucleotide phosphodiesterase type III, on human platelets. Biochem Pharmacol. 1988 Jun 15;37(12):2315–2320. doi: 10.1016/0006-2952(88)90357-7. [DOI] [PubMed] [Google Scholar]
  40. Sonnenburg W. K., Seger D., Beavo J. A. Molecular cloning of a cDNA encoding the "61-kDa" calmodulin-stimulated cyclic nucleotide phosphodiesterase. Tissue-specific expression of structurally related isoforms. J Biol Chem. 1993 Jan 5;268(1):645–652. [PubMed] [Google Scholar]
  41. Swinnen J. V., Joseph D. R., Conti M. Molecular cloning of rat homologues of the Drosophila melanogaster dunce cAMP phosphodiesterase: evidence for a family of genes. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5325–5329. doi: 10.1073/pnas.86.14.5325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Taira M., Hockman S. C., Calvo J. C., Taira M., Belfrage P., Manganiello V. C. Molecular cloning of the rat adipocyte hormone-sensitive cyclic GMP-inhibited cyclic nucleotide phosphodiesterase. J Biol Chem. 1993 Sep 5;268(25):18573–18579. [PubMed] [Google Scholar]
  43. Torphy T. J., Undem B. J., Cieslinski L. B., Luttmann M. A., Reeves M. L., Hay D. W. Identification, characterization and functional role of phosphodiesterase isozymes in human airway smooth muscle. J Pharmacol Exp Ther. 1993 Jun;265(3):1213–1223. [PubMed] [Google Scholar]
  44. Yan C., Bentley J. K., Sonnenburg W. K., Beavo J. A. Differential expression of the 61 kDa and 63 kDa calmodulin-dependent phosphodiesterases in the mouse brain. J Neurosci. 1994 Mar;14(3 Pt 1):973–984. doi: 10.1523/JNEUROSCI.14-03-00973.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES