Skip to main content
Molecular Vision logoLink to Molecular Vision
. 2010 Oct 5;16:1958–1981.

LOC387715/HTRA1 gene polymorphisms and susceptibility to age-related macular degeneration: A HuGE review and meta-analysis

Yu Tong 1, Jing Liao 3, Yuan Zhang 4, Jing Zhou 5, Hengyu Zhang 6, Meng Mao 2,
PMCID: PMC2956667  PMID: 21031019

Abstract

Purpose

To examine the association of age-related macular degeneration (AMD) with HtrA serine peptidase 1 (HTRA1) gene rs11200638 G→A polymorphism and LOC387715/ ARMS2 gene rs10490924 G→T polymorphisms, and to evaluate the magnitude of the gene effect and the possible genetic mode of action.

Methods

We searched the US National Library of Medicine’s PubMed, Embase, OMIM, ISI Web of Science, and CNKI databases in a systematic manner to retrieve all genetic association studies on the HTRA1 (rs11200638) and LOC387715/ ARMS2 (rs10490924) gene polymorphisms and AMD. We performed a meta-analysis conducted with Stata software, version 9.0.

Results

Individuals who carried the AA and AG genotypes of HTRA1 gene rs11200638 G→A polymorphism had 2.243 and 8.669 times the risk of developing AMD, respectively, when compared with those who carry the GG genotype. Individuals carrying the TT and TG genotypes of LOC387715/ ARMS2 gene rs10490924 G→T polymorphism had 7.512 and 2.353 times the risk of developing AMD, respectively, compared with those who carry GG genotype. These results suggested a “moderate” codominant, multiplicative genetic mode; that is, both HTRA1 rs11200638 G→A polymorphism and LOC387715/ARMS2 rs10490924 G→T polymorphism play important roles in the pathogenesis of AMD. We found no evidence of publication bias. Between-study heterogeneity was found in both allele-based analysis and genotype-based analysis.

Conclusions

HTRA1 rs11200638 G→A polymorphism and LOC387715/ARMS2 rs10490924 G→T polymorphism play important roles in AMD. Gene-gene and gene-environmental interactions, as well as precise mechanisms underlying common variants in the HTRA1 gene and LOC387715/ ARMS2 gene, potentially increase the risk of AMD and need further exploration.

Introduction

Age-related macular degeneration (AMD) is a neurodegenerative disease that leads to visual impairment and accounts for half of all cases of registered blindness in Western individuals older than 65 years of age [1-14]. There are approximately eight million people in the United States with symptoms of early or intermediate AMD, of whom approximately one million will develop advanced AMD within the next five years [15-17]. AMD is estimated to affect about 50 million people worldwide [18-20], and an increase in aging populations makes AMD a significant public health concern and a major focus of research efforts (National Advisory Council).

AMD is a clinically heterogeneous and genetically complex disease, with multiple environmental and genetic risk factors involved [20-25]. While epidemiological studies have linked cigarette smoking, alcohol consumption, light exposure, diet, drugs, and high blood pressure to the risk of AMD [19,23,26-36], familial aggregation and twin studies [37-43] have suggested that genetic variation may also play an important role in the disease. Although AMD has been reported to be associated with genetic variations in the genes of adenosine-triphosphate (ATP)-binding transporter protein 4 [44-46], apolipoprotein E [47-52], excision-repair cross-complementing group 6 [53], fibulin 5 [54], fibulin 6 [55,56], elongation of very-long-chain fatty acids-like 4 [57-59], factor B/complement component 2 [60], toll-like receptor 4 [61-63], and vascular endothelial growth factor [64], recent genome-wide linkage studies found that genomic regions at chromosomes 1q31–32 and 10q26 may have a bigger role in susceptibility to AMD [65]. The identification of overlapping loci on chromosome 1q by several study groups [66-68] indicates that this locus probably harbors a major AMD-associated gene. Recently, the component factor H (CFH) gene on chromosome 1q31 has been revealed as the first major AMD-susceptibility gene, perhaps accounting for about 30%–50% of AMD patients. The CFH Y402H variant in the CFH gene has also been identified as a causal polymorphism in studies of populations other than those of European and North American origin [30,69-78], and a follow-up meta-analysis [79] has confirmed this association in Western populations. Studies in Japan, however, did not show any associations between CFH Y402H polymorphism and AMD [80,81], suggesting that there must be some other loci susceptible for AMD. Several studies have showed that a locus at chromosome 10q26 [82-84] of CFH may independently contribute to AMD susceptibility [65,76,82-84]. Three genes identified at chromosome 10q26 and associated with the risk of AMD are Pleckstrin Homology Domain-containing Protein Family A member 1, age-related maculopathy susceptibility 2 (LOC387715/age-related maculopathy susceptibility 2 [ARMS2]), and high-temperature requirement factor A1 (HTRA1/PRSS11) [65,76,82-84]. Thus, AMD appears to be a product of the interaction between multiple loci of susceptibility rather than a collection of single-gene disorders. However, the number of loci involved, the degree of attributable risk conferred, and the interactions between various loci remain obscure.

The HTRA1 gene spans a 53,366-base region on chromosome 10q26 (124211047–124264413, Gene ID: 5654); it encodes a member of a family of serine proteases expressed in both mouse and human retinas [85,86], and its expression in human fibroblasts increases with aging [87]. HTRA1 appears to regulate the degradation of extracellular matrix proteoglycans. This activity has been considered to facilitate access of other degradative matrix enzymes, such as collagenases and matrix metalloproteinases, to their substrates [88]. Overexpression of HTRA1 alters the integrity of Bruch’s membrane, favoring the invasion of choroid capillaries across the extracellular matrix, as occurs in wet AMD. HTRA1 also binds and inhibits transforming growth factor-β (TGF-β), an important regulator of extracellular matrix deposition and angiogenesis [89]. During the years 2006 to 2008, several studies were conducted to investigate the association between HTRA1 gene polymorphisms and AMD. A single-nucleotide polymorphism (rs11200638) in the promoter region of the HTRA1 gene was found to be significantly associated with susceptibility to AMD in studies of Caucasian populations in the US [90-97], Central Europe [98], France [99], and the UK [100]; of East Asian populations in China [101-104] and Japan [105-107]; and of Indian populations in India [108]. Another putative AMD-susceptibility gene, LOC387715/ARMS2, has recently been identified. LOC387715/ARMS2 encodes a deduced 107–amino acid protein with nine predicted phosphorylation sites and a molecular mass of 12 kDa. Real-time (RT)-PCR analysis demonstrated that LOC387715/ARMS2 transcripts were expressed in the retina and in a variety of other tissues and cell lines. Transfection experiments in mammalian cells localized the protein to the mitochondrial outer membrane [95]. Up to now, the biologic characterization of this gene has been limited. However, Rivera et al. [109] concluded that the A69S single-nucleotide polymorphism (rs10490924) in exon 1 of the LOC387715/ARMS2 gene was the most likely susceptibility allele of AMD. Since an individual study may not have sufficient statistical robustness to confirm the association between HTRA1 and LOC387715/ARMS2 gene polymorphisms and AMD, we considered that a meta-analysis that combined data from all published studies would provide a more accurate estimate of the extent of association, leading to less risk of false-positive results [110]. Thus, we systematically pooled the results of all available population-based association studies of the HTRA1 rs11200638 G→A polymorphism, the LOC387715/ARMS2 rs10490924 G→T polymorphism, and AMD. We attempted to estimate the strength of the genetic association with AMD, as well as the genetic mode of action, and to gauge the extent of heterogeneity in the strength of the associations among different studies.

Methods

Search strategy and inclusion criteria

We searched the US National Library of Medicine’s PubMed, Embase, OMIM, ISI Web of Science, and Chinese National Knowledge Infrastructure (CNKI) databases in a systematic manner to retrieve all genetic association studies on the HTRA1 (rs11200638) and LOC387715/ARMS2 (rs10490924) polymorphisms and AMD published before April 2008. The search strategy was based on a combination of the terms (HtrA serine peptidase 1 or HTRA1), (age-related maculopathy susceptibility 2 or LOC387715), and (age-related macular degeneration or AMD). The references of all computer-identified publications were searched for additional studies, and the PubMed option ‘‘Related Articles’’ was also used to search for potentially relevant papers. Searches were performed by two independent reviewers (B.Z. and J.Y.). We included all published articles regardless the language of publication.

Studies were included if they met the following criteria: 1) The study reported original data from case-control or cohort studies. 2) The alleles and genotypes for the HTRA1 polymorphism (rs11200638), respectively, were A and G and AA, AG, and GG. 3) The alleles and genotypes for the LOC387715/ARMS2 polymorphism (rs10490924), respectively, were G and T and GG, GT, and TT. 4) The numbers of subjects possessing each allele and genotype in the AMD and control groups were available. 5) In the case of multiple publications from the same study group, the most complete and recent results were used. We set no restriction on the source of controls (general population, clinic, or hospital). For those studies where AMD was graded (e.g., drusen, pigment abnormalities in retinal pigment epithelium [RPE], geographic atrophy, and choroidal neovascularization [CNV]), the gradings were combined into a single AMD group.

Data extraction

Data were extracted independently by two investigators (B.Z. and J.Y.), who used recommended guidelines to report on meta-analyses of observational studies [111]. The following data were extracted from the eligible studies: authors, journal title and year of publication, country of origin, selection and characteristics of cases and controls, demographic data, ethnicity of the study population (e.g., Caucasian or East Asian), numbers of eligible and genotyped cases and controls, and genotype distributions in cases, controls, and available subgroups. Furthermore, we examined whether matching had been used; whether there was specific mention of blinding of the genotyping personnel to the clinical status of subjects; whether the genotyping method used had been validated; and whether genotype frequencies in control groups conformed to the Hardy–Weinberg equilibrium (HWE). Any disagreement was adjudicated by a third author (R.L.).

Statistical analysis

We used the odds ratio as the metric of choice and this was estimated for each study. To explore the possible association between HTRA1 and LOC387715/ARMS2 polymorphisms and AMD, and to avoid excessive comparisons, we calculated the odds ratio by two methods: allele comparison (the A allele versus the G allele in the HTRA1 rs11200638 G→A polymorphism), and comparing the risk-variant homozygotes and heterozygotes with wild homozygotes (i.e., AA versus GG [OR1] and AG versus GG [OR2] in the HTRA1 rs11200638 G→A polymorphism). We estimated and characterized the prevalence of the risk allele with only the data from controls. When we analyzed genotype data in the meta-analysis, zero cell counts were assigned a fixed value (typically 0.5). In addition, we calculated the population attributable risk (PAR) of the risk allele according to the Chang et al. [112] method.

We first compared the alleles for cases and controls to detect overall differences and genetic association. Allele frequencies were computed for studies reporting only genotypic data. Pooled odds ratios were computed two times: by the fixed effects model of Mantel and Haenszel [113], and by the random effects model of DerSimonian and Laird [114]. Random effects incorporated an estimate of between-study variance and provided wider confidence intervals when the results of the constituent studies differed. The random effects model was more appropriate when heterogeneity was present [115]. Unless otherwise stated, the random effects estimates reported here were calculated by the DerSimonian and Laird model.

Our primary genetic analysis of the HTRA1 rs11200638 G→A polymorphism, the LOC387715/ARMS2 rs10490924 G-to -T polymorphism, and AMD was based on the comparisons between risk-variant homozygotes and heterozygotes versus wild homozygotes so that the strength of the genetic association and the genetic mode of action could be identified exactly. Once an overall gene effect was confirmed, the genotype effects and genetic model were estimated by using the genetic model-free approach suggested by Minelli et al. [116], in which no assumptions about genetic models are required. A multivariate meta-analysis employing the Bayesian method [116] was used to calculate OR1 and OR2. The logarithm (log) odds ratios were modeled on the basis of both between- and within-study variations. A stochastic parameter lambda (λ), equal to the ratio of log OR2 and log OR1, was also computed [115]. The parameter λ suggested the genetic mode of action; specifically, the model is a recessive model if λ=0, a codominant model if λ=0.5, a dominant model if λ=1, and homozygous or heterosis model if λ<0 or λ>1.

We examined the deviations from the HWE in control populations for each study by using the exact method [117]. For all the analyses, we compared results between inclusion and exclusion of studies in Hardy–Weinberg (HW) disequilibrium. In addition, all studies were included regardless of HWE and provided a revision of the degree of HW disequilibrium by using the inbreeding coefficient (F) suggested by Trikalinos et al. [118]. In brief, data in the control group were used to assess the F value for each study. Predicted genotype frequencies were estimated and then used to replace the observed frequencies in the summary analysis of magnitude and the genetic model.

In sensitivity analysis, we estimated between-study heterogeneity across all eligible comparisons using Cochran’s Q statistic [115]. We also reported the I2 statistic, which describes the percentage of variability in point estimates due to sample heterogeneity rather than sampling error [119,120], and can quantify heterogeneity irrespective of the number of studies [120,121]. I2 values larger than 75% were considered to represent a “notable” heterogeneity [120,121]. Publication bias among studies was assessed by funnel plots [122] and cumulative meta-analysis [123]. In the analysis of subgroups, we estimated odds ratios according to racial descent (Caucasians versus East Asians) and AMD type (wet AMD and other subtype or combined AMD).

All analyses were conducted with Stata software, version 9.0 (StataCorp, 2005) [124], using the meta, metan, metabias, metacum, and metareg commands, except the Bayesian method of genotype-based analysis. We fitted the Bayesian models by using Markov chain Monte Carlo methods with a Bayesian framework and performed our inferences using WinBUGS 1.4.3 (Imperial College School of Medicine at St Mary's, London 2003) [125], taking advantage of its flexibility as well as its ability to incorporate full uncertainty across all unknown parameters. Bayesian analyses yielded credible intervals rather than confidence intervals; a 95% credible interval (CrI) describes a range in which it is probable that an unknown quantity lies within this interval. A “burn-in” of 10,000 iterations is performed for models, followed by 50,000 iterations for parameter estimates. A p value less than 0.05 was considered statistically significant.

Results

Eligible studies

A total of 29 studies were identified based on our search strategies, of which 13 studies [95-106,108] were eligible for inclusion in this meta-analysis; all of these were written in English. One [101] did not report genotype information in their paper, but online supporting materials provided the data. Two of the studies [100,106] did not have genotypic data, but the authors kindly sent the supplementary information to us. Sixteen studies were ineligible for the following reasons: six were reviews [22,24,126-129], six did not study the association between the HTRA1 rs11200638 G→A polymorphism and AMD [92-94,130-132], two [90,91] were duplicated reports of the most recent and comprehensive one [97], and one did not have genotype data [107].

Detailed characteristics of the 13 included studies on the association between HTRA1 rs11200638 G→A polymorphism and AMD are presented in Table 1. Among them, six studies related to Caucasian subjects, six to East Asians, and one to Indians. The average age of subjects ranged from 64.0 years to 81.2 years for cases and from 64.0 years to 77.4 years for controls. Characteristics of the 13 included studies on the association between LOC387715/ARMS2 rs10490924 G→T polymorphism and AMD are presented in Table 2. Among them, 14 studies related to Caucasians, three to East Asians, and one to Indians. The average age ranged from 60 to 79 years for cases and from 60 to 77 years for controls. All of the eligible studies had case-control designs. Cases in the studies were recruited from hospital patients and controls were mainly healthy populations recruited from the hospital or community and unrelated to cases.

Table 1. Characteristics of case-control studies included in a meta-analysis of the association between the HTRA1 gene polymorphisms and AMD.

Ref
Year
Region, country study was conducted
Ethnicity
Study design
Sex composition in cases (% males)
Mean age (years) Cases
Controls
Number of eligible subjects
Cases
Controls
Cases
Controls
[101]
2006
China
East Asian
Case-control
68
74.9
74.2
Wet AMD
Age matched controls without AMD, confirmed by full ophthalmologic examination
96
130
[98]
2007
Austria
Caucasian
Case-control
35.5
78
77.4
Exudative AMD in AMD level 4
Caucasians without AMD on the base of a detailed eye examination and fundus examination
242
157
[102]
2007
China
East Asian
Case-control
45.1
64.0/
64
Drusen, and wet AMD
Without any AMD, confirmed by a normal eye examination
164
106
[105]
2007
Japan
East Asian
Case-control
72.4
71.9
67.9
AMD, combined
Without AMD and unrelated to cases, confirmed by full ophthalmologic examination
123
133
[106]
2007
Japan
East Asian
Case-control
79.5
75.7
71.2
Wet AMD
Hospital-based controls without retinal diseases and AMD on the base of full ophthalmologic examination
73
94
[95]
2007
USA
Caucasian
Case-control
NR
>68.0
>68.0
AMD, combined
Without AMD on the base of full ophthalmologic examination
535
288
[99]
2007
France
Caucasian
Case-control
NR
>65.0
>65.0
Exudative AMD
Without any type of drusen, geographic atrophy, or exudative AMD.
200
116
[96]
2007
USA
Caucasian
Case-control
NR
71.3
72.8
Wet AMD
Without AMD on the base of full ophthalmologic examination
134
134
[100]
2007
UK
Caucasian
Case-control
40.6
>65.0
>65.0
Wet AMD
Without AMD on the base of full ophthalmologic examination
401
266
[97]
2008
USA
Caucasian
Case-control
49.0/
52.5/
38.0/
44.4
81.2/
78.9/
81.0/
78.3
74
bilateral wet AMD, unilateral wet AMD, bilateral GA, and unilateral GA.
Without any type of drusen, GA, AMD, and RPE
776
294
[103]
2008
China
East Asian
Case-control
54
71.2
71.5
Dry and wet AMD
Age and sex matched controls without any visual impairment, excluded a family history of AMD and any type of drusen, geographic atrophy, CNV, or other retinal disorder in either eye.
95
90
[104]
2008
China
East Asian
Case-control
54
75.5
73.3
Exudative AMD
Without any AMD and any other major eye diseases
163
183
[108] 2008 India Indian Asian Case-control NR 68.8 64.4 AMD, combined Ethnic matched controls, without a family history of AMD or any other ocular or systemic diseases 250 250

Table 2. Characteristics of case-control studies included in a meta-analysis of the association between the LOC387715 gene polymorphisms and AMD.

Ref
Year
Region, country study was conducted
Ethnicity
Study design composition in cases (% males)
Sex
Mean age (years) Cases
Controls
Number of eligible subjects
Cases
Controls
Cases
Controls
[106]
2007
Japan
East Asian
Case-control
79.5
75.7
71.2
Wet AMD
Hospital-based controls without retinal diseases and AMD on the base of full ophthalmologic examination
73
94
[95]
2007
USA
Caucasian
Case-control
NR
>68.0
>68.0
Wet AMD+Dry AMD
Without AMD on the base of full ophthalmologic examination
431
280
[99]
2007
France
Caucasian
Case-control
NR
>65.0
>65.0
Wet AMD
Without any type of drusen, geographic atrophy, or exudative AMD.
118
116
[96]
2007
USA
Caucasian
Case-control
NR
71.3
72.8
Wet AMD
Without AMD on the base of full ophthalmologic examination
134
134
[100]
2007
UK
Caucasian
Case-control
40.6
>65.0
>65.0
Wet AMD
Without AMD on the base of full ophthalmologic examination
401
266
[108]
2008
India
Indian Asian
Case-control
NR
68.8
64.4
Wet AMD+Dry AMD
Ethnic matched controls, without a family history of AMD or any other ocular or systemic diseases
193
203
[3]
2008
China
East Asian
Case-control
58.7
66
66.1
Wet AMD
Without any AMD and any other major eye diseases aside from mild age-related cataracts
121
132
[84]
2005
Germany
Caucasian
Case-control
NR
NR
NR
Wet AMD+Dry AMD
Without any AMD and any other major eye diseases
759
594
[84]
2005
Germany
Caucasian
Case-control
35.1
75.01
68.25
Wet AMD+Dry AMD
Unrelated controls without any AMD and any other major eye diseases
361
328
[133]
2006
USA
Caucasian
Case-control
42
79.5
76.5
Wet AMD+Dry AMD
Without AMD on the base of full ophthalmologic examination
693
172
[133]
2006
USA
Mixed
Case-control
44
73.2
70.3
Wet AMD+Dry AMD
Without AMD on the base of full ophthalmologic examination
120
995
[56]
2007
Russia
Caucasian
Case-control
27.7
72.6
71.1
Wet AMD+Dry AMD
Free of macular changes
155
151
??
2007
Japan
East Asian
Case-control
70.5
73.4
73.6
Wet AMD
Without any AMD
95
99
??
2007
USA
Caucasian
Nested case-control
35.2
60.1
60.2
Wet AMD+Dry AMD
Within 1 year of the same age with cases, and underwent eye examination in the past 2 years
445
1041
[128]
2007
USA
Caucasian
Case-control
42.6
79
72
Wet AMD+Dry AMD
AMD free controls
399
329
[13]
2007
Australia
Caucasian
Cohort
39.9
75.6
74.9
Wet AMD+Dry AMD
AMD free controls
278
557
[93]
2007
USA
Caucasian
Case-control
NR
NR
NR
Wet AMD
Without any AMD
87
232
[83] 2008 USA Caucasian Case-control 39.6 79.1 72.9 Wet AMD+Dry AMD Without AMD on the base of full ophthalmologic examination 164 155

Allele comparison

Data from the control groups were used to calculate the summary allele frequency. The frequency of the risk allele A in the HTRA1 rs11200638 G→A polymorphism among controls was 32.33% (95% confidence interval [CI]: 26.29, 38.38), and was significantly higher in Asians than in Caucasians (40.11% [95% CI: 35.11, 45.12] versus 23.25% [95% CI: 18.41, 28.09], p=0.0001). The frequency of the risk allele T in the LOC387715/ARMS2 rs10490924 G→T polymorphism among controls was 25.17% (95% CI: 17.33, 33.00), and was also significantly higher in Asians than in Caucasians (38.67% [95% CI: 34.63, 42.71] versus 21.62% [95% CI: 17.41, 28.83], p=0.0000178).

All of the 13 studies were included to evaluate the association between the HTRA1 rs11200638 G→A polymorphism and AMD [95-106,108]. As shown in Figure 1A, individuals with the A allele experienced a 2.80-fold increased risk of AMD when compared to individuals with the G allele (random effect OR=2.910, 95% CI: 2.552, 3.318; Q=25.769, p=0.012, I2=53.4%). The magnitude of the effect was similar for Asians (random effect OR=2.841, 95% CI: 2.482, 3.252) and Caucasians (random effect OR=2.981, 95% CI: 2.357, 3.370). However, there was significantly greater between-study heterogeneity among Caucasians (Q=20.128, p=0.001, I2=75.2%) than Asians (Q=5.636, p=0.465, I2=0.0%). Excluding and adjusting two studies [96,97] with Hardy–Weinberg equilibrium did not change the results (data not shown). After appropriately carrying out a set of prespecified subgroups [97], a low level of between-study heterogeneity was found (random effect OR=3.043, 95% CI: 2.725, 3.397; Q=14.318, p=0.216, I2=23.2%). We did not find any evidence of publication bias in the eligible studies (corrected Begg’s test z=0.43, corrected p=0.669). Figure 2 shows the cumulative meta-analysis results; they remained significant and were consistent over time.

Figure 1.

Figure 1

Random-effects meta-analysis of allele (A versus G) of the HTRA1 gene rs11200638 G→A polymorphism and age related macular degeneration (AMD). A: Results from random-effects meta-analysis of allele (A versus G) of the HTRA1 gene rs11200638 G→A polymorphism and AMD. B: Results of the random-effects meta-analysis of the allele (T versus G) of the LOC387715/ARMS2 gene rs10490924 G→T polymorphism and AMD. Reference numbers are given in parentheses. For study details, see Table 1 and Table 2.

Figure 2.

Figure 2

Cumulative random-effects meta-analysis of allele (A versus G) of the HTRA1 gene rs11200638 G→A polymorphism and age related macular degeneration (AMD). For study details, see Table 3.

The association between the LOC387715/ ARMS2 rs10490924 G→T polymorphism and AMD was also evaluated. As shown in Figure 1B, individuals with the T allele had a 2.734 fold increased risk of AMD when compared to individuals with the G allele (random effect OR=2.734, 95% CI: 2.366, 3.158; Q=80.195, p=0.000, I2=78.8%). The magnitude of the effect was similar between Asians (random effect OR=2.692, 95% CI: 2.086, 3.315) and Caucasians (random effect OR=2.794, 95% CI: 2.333, 3.346). There was also a significant difference between-study heterogeneity among Caucasians (Q=73.265, p=0.000, I2=83.6%) as opposed to Asians (Q=0.481, p=0.786, I2=0.0%). Figure 3 shows the cumulative meta-analysis results; they remained significant and were consistent over time.

Figure 3.

Figure 3

Cumulative random-effects meta-analysis of allele (G versus T) of the LOC387715/ ARMS2 gene rs10490924 G→T polymorphism and age related macular degeneration (AMD). For study details, see Table 4.

Genotype comparison

The genotype frequency of the HTRA1 rs11200638 G→A polymorphism between case and control groups is presented in Table 3. The genotype effects for AA versus GG (OR1) and AG versus GG (OR2) were calculated for each study. The genotype frequency of the LOC387715/ARMS2 rs10490924 G→T polymorphism between the case and control groups is presented in Table 4. The genotype effects for TT versus GG (OR1) and TG versus GG (OR2) were calculated for each study.

Table 3. The association between the HTRA1 gene polymorphisms and AMD—- Allele and genotype frequencies of case-control studies included in a meta-analysis.

Ref
Year
Genotype distribution AA / GG
AG / GG
A / G
cases
controls
N
AA
AG
GG
P value for HWE
N
AA
AG
GG
P value for HWE
OR1
95% CI
OR2
95% CI
OR
95% CI
[101]
2006
96
44
40
18
0.266
130
14
59
57
0.976
9.952
4.465~22.184
2.147
1.104~4.174
3.626
2.450~5.368
[98]
2007
242
67
108
67
0.247
157
8
50
99
0.877
12.375
5.583~27.432
3.192
2.022~5.039
3.723
2.693~5.158
[102]
2007
164
68
77
19
0.924
106
15
63
28
0.104
6.681
2.980~14.979
1.801
0.921~3.523
2.37
1.664~3.375
[105]
2007
123
45
55
26
0.488
133
22
57
54
0.582
4.248
2.127~8.487
2.004
1.103~3.640
2.231
1.566~3.178
[106]
2007
73
29
39
5
0.239
94
16
40
38
0.627
13.775
4.520~41.984
7.41
2.642~20.786
3.189
2.029~5.013
[95]
2007
457
102
183
172
<0.001
280
11
90
179
0.997
9.65
5.006~18.601
2.112
1.525~2.937
2.937
2.299~3.753
[99]
2007
118
32
57
29
0.937
116
5
41
70
0.948
15.448
5.476~43.582
3.356
1.860~6.055
3.734
2.498~5.583
[96]*
2007
134
43
54
37
0.0837
134
21
43
70
0.0111
3.874
2.009~7.469
2.376
1.350~4.180
2.358
1.657~3.347
[100]
2007
401
106
172
123
0.019
266
6
91
169
0.296
24.274
10.327~57.057
2.597
1.841~3.664
3.826
2.963~4.942
[97]*
2008
776
131
400
245
0.327
294
10
128
156
0.0282
8.341
4.253~16.360
1.99
1.500~2.640
2.042
1.652~2.525
[103]
2008
95
53
33
9
0.53
90
19
47
24
0.903
7.439
2.940~18.819
1.872
0.772~4.541
3.046
1.973~4.703
[104]
2008
163
94
51
18
0.0379
183
38
90
55
0.994
7.559
3.398~14.509
1.732
0.919~3.262
3.31
2.403~4.559
[108]
2008
229
90
89
50
0.0111
184
21
85
78
0.956
6.686
3.695~12.098
1.633
1.028~2.595
2.701
2.033~3.589
Total   3071         2167                    

* Hardy–Weinberg disequilibrium in case and/or control group

Table 4. The association between the LOC387715 gene polymorphisms and AMD—Allele and genotype frequencies of case-control studies included in a meta-analysis.

Ref
Year
Genotype distribution TT / GG
TG / GG
T / G
cases
controls
N
TT
TG
GG
P value for HWE
N
TT
TG
GG
P value for HWE
OR1
95% CI
OR2
95% CI
OR
95% CI
[106]
2007
73
27
40
6
0.25
94
15
41
38
0.783
11.4
3.920~33.155
6.179
2.354~16.217
2.979
1.901~4.668
[95]
2007
431
133
180
118
<0.001
280
12
99
169
0.992
15.875
8.405~29.979
2.604
1.854~3.658
3.809
2.995~4.845
[99]
2008
118
37
55
26
0.811
116
5
40
71
0.978
20.208
7.169~56.962
3.755
2.048~6.886
4.388
2.928~6.576
[96]
2008
134
45
51
38
0.0234
134
22
44
68
0.013
3.66
1.918~6.985
2.074
1.178~3.653
2.271
1.600~3.223
[100]
2005
401
111
170
120
0.00992
266
10
89
167
0.908
15.448
7.761~30.746
2.658
1.878~3.763
3.71
2.884~4.774
[108]
2005
193
81
77
35
0.101
203
25
89
89
0.932
8.239
4.544~14.937
2.2
1.340~3.613
3.123
2.336~4.175
[3]
2006
121
54
49
18
0.472
132
22
70
40
0.651
5.455
2.589~11.491
1.556
0.800~3.026
2.43
1.697~3.480
[84]
2006
759
142
349
268
0.327
594
27
179
388
0.558
7.614
4.904~11.822
2.823
2.225~3.582
2.932
2.459~3.495
[84]
2007
361
88
156
117
0.0471
328
16
109
203
0.962
9.543
5.347~17.030
2.483
1.778~3.468
3.109
2.453~3.940
[133]
2007
693
135
341
217
0.999
172
4
57
111
0.567
17.264
6.223~47.893
3.06
2.131~4.395
1.949
1.466~2.592
[133]
2007
120
18
49
53
0.501
995
43
351
601
0.654
4.747
2.559~8.804
1.583
1.050~2.386
3.384
2.532~4.523
[56]
2007
155
16
66
73
0.982
151
10
66
75
0.669
1.644
0.700~3.859
1.027
0.643~1.643
1.161
0.821~1.641
??
2007
95
39
34
22
0.0398
99
10
50
39
0.58
6.941
2.898~16.491
1.205
0.610~2.380
2.626
1.742~3.958
??
2007
445
68
182
195
0.0694
1041
41
308
692
0.661
5.886
3.872~8.948
2.097
1.645~2.673
2.412
2.023~2.876
[128]
2007
399
69
182
148
0.601
329
12
100
217
0.994
8.431
4.412~16.112
2.669
1.935~3.679
2.883
2.265~3.670
[13]
2007
278
14
120
144
0.216
557
16
179
362
0.547
2.2
1.047~4.623
1.685
1.247~2.278
1.552
1.221~1.974
[93]
2007
87
19
38
30
0.578
232
13
60
159
0.092
7.746
3.459~17.346
3.357
1.911~5.896
3.409
2.331~4.986
[83]
2008
164
40
74
50
0.483
155
10
42
103
0.108
8.24
3.812~17.813
3.63
2.185~6.029
3.54
2.488~5.038
Total   5027         5878                    

In our primary analysis, multivariate meta-analysis was conducted to estimate the pooled risk and there was a significantly increased risk of AMD among individuals with both homozygous variant AA genotype (Bayesian random effect OR1=8.469, 95% CrI: 6.766, 10.710) and heterozygous variant AG genotype (Bayesian random effect OR2=2.243, 95% CrI: 1.969, 2.559) of the HTRA1 rs11200638 G→A polymorphism. A moderate level of between-study heterogeneity (Q=19.201, p=0.084, I2=37.5%) was found for the homozygous AA genotype and no between-study heterogeneity (Q=13.951, p=0.304, I2=14.0%) was found for the heterozygous AG genotype. The estimated parameter λ was 0.378 (95% CrI: 0.329, 0.428), which suggested a moderate codominant genetic mode of action. When we removed the two studies [96,97] with HW disequilibrium, similar results appeared with the pooled OR1, OR2, and λ of 9.257 (95% CrI: 7.267, 11.910), 2.334 (95% CrI: 2.012, 2.706), and 0.380 (95% CrI: 0.327, 0.435), respectively; however, no significant between-study heterogeneity was found for either the homozygous AA genotype (Q=13.898, p=0.178, I2=28.0%) or the heterozygous AG genotype (Q=13.041, p=0.221, I2=23.3%). The pooled estimates also remained similar after adjusting HW disequilibrium by coefficient F (OR1=9.065 [95% CrI: 7.397, 11.180], OR2=2.306 [95% CrI: 2.039, 2.607], and λ=0.379 [95% CrI: 0.332, 0.427]).

Multivariate meta-analysis also showed that there was a significantly increased risk of AMD among individuals with both the homozygous variant TT genotype (Bayesian random effect OR1=7.512, 95% CrI\: 5.703, 9.659) and heterozygous variant TG genotype (Bayesian random effect OR2=2.353, 95% CrI: 2.072, 2.665) of the LOC387715/ ARMS2 rs10490924 G→T polymorphism. The estimated parameter for λ was 0.426 (95% CrI: 0.387, 0.467), which suggested a moderate codominant genetic mode of action.

For the HTRA1 rs11200638 G→A polymorphism, stratification by ethnicity indicated a considerable variation in the size of effects between Asian populations (Bayesian random effect OR1=7.100, 95% CrI: 5.325, 9.494; Bayesian random effect OR2=2.009, 95% CrI: 1.625, 2.511; λ=0.356, 95% CrI: 0.267, 0.442) and Caucasian populations (Bayesian random effect OR1=10.130, 95% CrI: 6.323, 0.574; Bayesian random effect OR2=2.347, 95% CrI: 1.918, 2.910; λ=0.368, 95% CrI: 0.307, 0.434). A moderate degree of between-study heterogeneity was found for the AA homozygous genotype among both Asians (Q=13.978, p=0.030, I2=57.1%) and Caucasians (Q=13.203, p=0.022, I2=62.1%), but no significant between-study heterogeneity was found for the AG homozygous genotype among either population (Asians: Q=7.309, p=0.293, I2=17.93%; Caucasians: Q=5.165, p=0.396, I2=3.2%). For the LOC387715/ ARMS2 rs10490924 G→T polymorphism, a moderate level of between-study heterogeneity was found for the TT homozygous genotype among Caucasians (Q=45.035, p=0.000, I2=73.8%) and for the TG heterozygous genotype among both Asians (Q=7.783, p=0.020, I2=74.5%) and Caucasians (Q=29.790, p=0.003, I2=59.7%); however, no significant degree of between-study heterogeneity was found for the TT homozygous genotype among Asians (Q=1.232, p=0.54, I2=0.0%).

Results of metaregression analysis indicated that classification of AMD (wet AMD versus combined AMD) was significantly associated with log OR2 (metaregression beta coefficient=-0.325, p=0.016). We performed stratification analysis on wet AMD and the combined AMD of the HTRA1 rs11200638 G→A polymorphism, and found a considerable difference in effects between wet AMD (Bayesian random effect OR1=10.110, 95% CrI: 6.998, 16.490; Bayesian random effect OR2=2.647, 95% CrI: 2.132, 3.280; λ=0.420, 95% CrI: 0.0.350, 0.491) and combined AMD (Bayesian random effect OR1=7.087, 95% CrI: 5.284, 9.523; Bayesian random effect OR2=1.931, 95% CrI: 1.643, 2.277; λ=0.337, 95% CrI: 0.267, 0.408). This stratification exhibited no between-study heterogeneity for either OR1 (Q=3.232, p=0.664, I2=0.0%) or OR2 (Q=0.890, p=0.971, I2=0.0%) for combined AMD, and found a moderate degree of between-study heterogeneity for OR1 (Q=13.978, p=0.030, I2=57.1%) and non-significant between-study heterogeneity for OR2 (Q=7.309, p=0.293, I2=17.9%) of the wet AMD (Table 5).

Table 5. Age related macular degeneration (AMD): HTRA1 SNPs versus ARMS2 single nucleotide polymorphisms (SNPs).

Comparison
No. of studies
Total sample size (n)
Bayesian random effects Fixed effects Random effects Heterogeneity
Odds ratio
95% credible interval
Odds ratio
95% CI
Odds ratio
95% CI
Q
P value
I2 (%)
HTRA1 (rs11200638)
A allele versus G allele
Total
16
4034/3212
/
/
2.664
2.476, 2.867
2.803
2.486, 3.159
34.576
0.003
56.6
HWE
14
3124/2784
/
/
2.754
2.542, 2.984
2.909
2.547, 3.324
30.471
0.004
57.4
Adjusted HWE
16
4034/3212
/
/
2.701
2.510, 2.907
2.827
2.519, 3.173
31.923
0.007
53
East Asian
7
835/868
/
/
2.847
2.473, 3.278
2.847
2.473, 3.278
4.873
0.56
0
Caucasian
8
2970/2160
/
/
2.589
2.366, 2.833
2.8
2.289, 3.424
28.452
0
75.4
Seven studies with 2 SNPs
7
1533/1206
/
/
3.059
2.717, 3.444
3.053
2.681, 3.478
7.028
0.318
14.7
AA versus GG
Total
16
4034/3212
7.972
6.453, 9.778
7.21
6.035, 8.614
7.737
6.096, 9.821
24.308
0.06
39.2
HWE
14
3124/2784
8.424
6.667, 10.540
7.515
6.201, 9.107
8.16
6.314, 10.546
20.51
0.083
37.6
Adjusted HWE
16
4034/3212
8.225
6.700, 10.030
7.423
6.205, 8.880
7.928
6.286, 10.000
22.776
0.089
35.3
East Asian
7
835/868
7.604
5.541, 10.100
7.273
5.390, 9.815
7.273
5.390, 9.815
4.27
0.64
0
Caucasian
8
2970/2160
8.691
5.813, 13.600
7.258
5.719, 9.211
8.687
5.556, 13.582
19.969
0.006
65.8
Wet AMD
8
1348/1212
9.484
6.834, 12.800
9.205
6.941, 12.207
9.843
6.539, 14.817
14.147
0.049
51.6
Wet AMD + Dry AMD
8
2686/2000
6.561
5.137, 8.270
6.138
4.881, 7.719
6.138
4.881, 7.719
5.391
0.612
0
Seven studies investigated 2 SNPs
7
1533/1206
8.967
5.964, 12.920
8.534
6.411, 11.360
9.309
5.924, 14.682
14.097
0.029
58.8
AG versus GG
Total
16
4034/3212
2.226
1.982, 2.496
2.168
1.944, 2.418
2.18
1.943, 2.447
15.784
0.397
5
HWE
14
3124/2784
2.28
2.006, 2.589
2.193
1.943, 2.475
2.232
1.935, 2.574
15.295
0.289
15.1
Adjusted HWE
16
4034/3212
2.252
2.011, 2.516
2.192
1.966, 2.445
2.204
1.962, 2.477
15.942
0.386
5.9
East Asian
7
835/868
2.277
1.781, 2.866
2.202
1.684, 2.878
2.219
1.665, 2.957
6.812
0.339
12.3
Caucasian
8
2970/2160
2.273
1.916, 2.741
2.205
1.948, 2.495
2.221
1.949, 2.531
7.453
0.383
6.1
Wet AMD
8
1348/1212
2.692
2.197, 3.249
2.706
2.231, 3.281
2.708
2.219, 3.305
7.311
0.397
4.3
Wet AMD + Dry AMD
8
2686/2000
1.959
1.723, 2.222
1.953
1.711, 2.230
1.953
1.711, 2.230
1.024
0.994
0
Seven studies with 2 SNPs
7
1533/1206
2.392
1.938, 2.907
2.396
2.004, 2.866
2.471
1.946, 3.138
9.387
0.153
36.2
λ
Total
 
 
0.386
0.343, 0.430
 
 
 
 
 
 
 
HWE
 
 
0.387
0.340, 0.435
 
 
 
 
 
 
 
Adjusted HWE
 
 
0.386
0.343, 0.429
 
 
 
 
 
 
 
East Asian
 
 
0.403
0.311, 0.491
 
 
 
 
 
 
 
Caucasian
 
 
0.381
0.327, 0.438
 
 
 
 
 
 
 
Wet AMD
 
 
0.441
0.373, 0.510
 
 
 
 
 
 
 
Wet AMD + Dry AMD
 
 
0.359
0.300, 0.419
 
 
 
 
 
 
 
Seven studies with 2 SNPs
 
 
0.4
0.331, 0.471
 
 
 
 
 
 
 
LOC387715/ARMS2 (rs10490924)
T allele versus G allele
Total
18
5027/5878
/
/
2.725
2.556, 2.906
2.734
2.366, 3.158
80.195
0
78.8
HWE
17
4893/5744
/
/
2.742
2.569, 2.928
2.761
2.376, 3.209
79.116
0
79.8
Adjusted HWE
18
5027/5878
/
/
2.715
2.547, 2.896
2.719
2.351, 3.145
81.68
0
79.2
East Asian
3
289/325
/
/
2.692
2.086, 3.315
2.692
2.086, 3.315
0.481
0.786
0
Caucasian
13
4425/4355
/
/
2.769
2.580, 2.972
2.794
2.333, 3.346
73.265
0
83.6
Seven studies with 2 SNPs
7
1471/1225
/
/
3.276
2.912, 3.686
3.211
2.711, 3.802
11.596
0.072
48.3
TT versus GG
Total
18
5027/5878
7.512
5.703, 9.659
7.096
6.069, 8.296
7.216
5.492, 9.480
48.208
0
65.3
HWE
17
4893/5744
7.826
5.886, 10.140
7.394
6.294, 8.683
7.533
5.707, 9.943
43.926
0
64.2
Adjusted HWE
18
5027/5878
7.51
5.692, 9.672
7.1
6.071, 8.303
7.209
5.483, 9.480
48.331
0
65.4
East Asian
3
289/325
/
/
6.934
4.206, 11.431
6.934
4.206, 11.431
1.232
0.54
0
Caucasian
13
4425/4355
7.57
5.326, 10.850
7.261
6.076, 8.677
7.41
5.176, 10.607
45.035
0
73.8
Wet AMD
7
1029/1073
8.567
5.509, 12.600
7.828
5.786, 10.582
8.273
5.191, 13.185
13.738
0.033
56.9
Wet AMD + Dry AMD
11
3998/4805
7.021
4.678, 9.950
6.846
5.703, 8.218
6.708
4.734, 9.505
33.919
0
71.1
Seven studies with 2 SNPs
7
1471/1225
9.767
6.169, 14.480
9.134
6.951, 12.002
9.521
5.922, 15.307
17.209
0.009
65.6
GT versus GG
Total
18
5027/5878
2.353
2.072, 2.665
2.336
2.134, 2.558
2.324
1.993, 2.709
42.812
0.001
60.3
HWE
17
4893/5744
2.38
2.093, 2.702
2.343
2.138, 2.569
2.336
1.990, 2.741
42.638
0
62.5
Adjusted HWE
18
5027/5878
2.334
2.058, 2.643
2.316
2.115, 2.535
2.29
1.956, 2.681
45.09
0
62.3
East Asian
3
289/325
/
/
1.843
1.203, 2.823
2.119
0.893, 5.029
7.783
0.02
74.5
Caucasian
13
4425/4355
2.424
2.062, 2.865
2.422
2.198, 2.669
2.445
2.082, 2.871
29.79
0.003
59.7
Wet AMD
7
1029/1073
2.519
1.983, 3.147
2.531
2.053, 3.122
2.519
1.813, 3.501
13.05
0.042
54
Wet AMD + Dry AMD
11
3998/4805
2.285
1.921, 2.694
2.293
2.074, 2.536
2.253
1.886, 2.691
29.067
0.001
65.6
Seven studies with 2 SNPs
7
1471/1225
2.507
1.999, 3.088
2.564
2.137, 3.076
2.567
2.065, 3.191
7.834
0.251
23.4
λ
Total
 
 
0.426
0.387, 0.467
 
 
 
 
 
 
 
HWE
 
 
0.423
0.384, 0.463
 
 
 
 
 
 
 
Adjusted HWE
 
 
0.422
0.383, 0.462
 
 
 
 
 
 
 
East Asian
 
 
/
/
 
 
 
 
 
 
 
Caucasian
 
 
0.438
0.395, 0.483
 
 
 
 
 
 
 
Wet AMD
 
 
0.433
0.354, 0.513
 
 
 
 
 
 
 
Wet AMD + Dry AMD
 
 
0.428
0.382, 0.475
 
 
 
 
 
 
 
Seven studies with 2 SNPs     0.406 0.341, 0.472              

Summary odds ratios of HTRA1 rs11200638 polymorphism and LOC387715/ARMS2 rs10490924 polymorphism.

We also performed stratification analysis on the wet AMD and combined AMD of the LOC387715/ARMS2 rs10490924 G→T polymorphism, and found a considerable difference in effect between wet AMD (Bayesian random effect OR1=8.567, 95% CrI: 5.509, 12.600; Bayesian random effect OR2=2.519, 95% CrI: 1.983, 3.147; λ=0.433, 95% CrI: 0.354, 0.513) and combined AMD (Bayesian random effect OR1=7.021, 95% CrI: 7.021; Bayesian random effect OR2=2.285, 95% CrI: 1.921, 2.694; λ=0.428, 95% CrI: 0.382, 0.475). This stratification found no between-study heterogeneity for either OR1 (Q=5.391, p=0.612, I2=0.0%) or OR2 (Q=1.024, p=0.994, I2=0.0%) for combined AMD, and found a moderate degree of between- study heterogeneity for OR1 (Q=14.147, p=0.049, I2=51.6%) and non-significant between-study heterogeneity for OR2 (Q=7.311, p=0.397, I2=4.3%) of the wet AMD (Table 5).

There was no evidence of small study bias or publication bias for the two comparisons. For the HTRA1 rs11200638 G→A polymorphism, funnel plots for the comparisons made for the AA homozygotes and AG heterozygotes gave corrected p=0.077 (corrected Begg’s z=1.77) and corrected p=0.669 (corrected Begg’s z=0.43), respectively. Figure 4 shows the cumulative result of meta-analysis of the AA homozygotes and AG heterozygotes; they remained significant and stayed relatively unchanged after the third study (Figure 4A,B). Figure 5 shows the cumulative result of meta-analysis of the TT homozygotes and TG heterozygotes of LOC387715/ARMS2 rs10490924 with G→T polymorphism; they remained significant and relatively unchanged after the third study.

Figure 4.

Figure 4

Cumulative random-effects meta-analysis of homozygous (A: AA versus GG) and heterozygous (B: AG versus GG) genotypes of the HTRA1 gene rs11200638 G→A polymorphism and ager related macular degeneration (AMD). For study details, see Table 3.

Figure 5.

Figure 5

Cumulative random-effects meta-analysis of homozygous (A: TT versus GG) and heterozygous (B: GT versus GG) genotypes of LOC387715/ARMS2 gene rs10490924 G→T polymorphism and age related macular degeneration (AMD). For study details, see Table 4.

Discussion

To our knowledge, this is the first general overview of the association between the HTRA1 rs11200638 G→A polymorphism, the LOC387715/ARMS2 rs10490924 G→T polymorphism, and susceptibility to AMD. The results of our meta-analysis suggest a strong association and a moderate codominant genetic mode of action. Our primary analysis shows that, for the HTRA1 rs11200638 G→A polymorphism, the AA homozygotes carry an 8.5 fold increased risk of AMD, and the AG heterozygous variants carry just a 2.5 fold increase in risk when compared with GG homozygotes; for the LOC387715/ARMS2 rs10490924 G→T polymorphism, the TT homozygotes carry a 7.5 fold increased risk of AMD, and the TG heterozygous variants carry just a 2.4 fold increase in risk when compared with the GG homozygotes. In addition, our allele-based analysis suggests a nearly 3.0-fold increase in susceptibility to AMD among persons with the A allele of the HTRA1 rs11200638 G→A polymorphism and the T allele of the LOC387715/ARMS2 rs10490924 G→T polymorphism.

Our findings were based on several gene-association studies, which include several thousand participants and were robust in terms of all the planned and performed sensitivity analyses. We found no evidence of publication bias or small study bias by funnel plots and cumulative meta-analysis; moreover, “moderate,” “moderate,” and “low” degrees of between-study heterogeneity were found in alleles (A versus G), homozygotes (AA versus GG), and heterozygotes (AG versus GG) of the association between the HTRA1 rs11200638 G→A polymorphism and AMD. When HWE was examined, 11 of the 13 studies showed no deviation and two showed some deviation. The removal of the two HW disequilibrium studies meant that our overall results were also robust; statistical adjustment for the deviations were similar and consistent with the incipient results. The point estimate values were closer to a codominant model after removal of the HW disequilibrium studies and statistical adjustment for the deviation; this suggested a multiplicative genetic mode of action that needs to be verified by more studies, particularly large-scale, long-term longitudinal studies. Moderate between-study heterogeneity was also found in the alleles (T versus G), homozygotes (TT versus GG), and heterozygotes (TG versus GG) of the association between the LOC387715/ARMS2 rs10490924 G→T polymorphism and AMD. However, the data we collected in this systematic review can only support a moderate codominant genetic model with a tight confidence interval.

The HTRA1 gene encodes a member of the trypsin family of serine proteases [133]. The precise pathomechanism by which the HTRA1 rs11200638 A risk allele affects susceptibility to AMD is still unclear [134,135]. The upregulation of HTRA1 plays a detrimental role in arthritic disease through its capacity to degrade extracellular matrices (ECMs) directly and to upregulate the expression of matrix metalloproteinase, which results in ECM degradation [88]. Yang et al. [90] hypothesized that the most likely mechanism in the involvement of rs11200638 with AMD may be the enhancement of ECM degradation [90]. As shown in the model of laser-induced CNV [136], the destruction of the Bruch membrane leads to CNV development [90]. Although the function of HTRA1 in ocular tissues is unclear, it is reasonable to speculate that CNV may develop when the Bruch membrane is exposed to the detrimental effects of HTRA1. In vitro, higher luciferase expressions have been reported in both ARPE19 and HeLaS3 cells transfected with the HTRA1 rs1120638 risk homozygote (AA) genotype when compared to the wild-type (GG) [101]. It has been suggested that the presence of the HTRA1 rs11200638 A risk allele may alter the affinity of transcription factors, including the adaptor-related protein complex 2 alpha and serum response factor to the HTRA1 promoter [101]. Another potential mechanism by which the HTRA1 rs11200638 A allele may increase AMD risk is its ability to bind to TGF-β family members and to inhibit signaling of TGF-β family proteins, such as bone morphogenetic protein 2 and bone morphogenetic protein 4), which have previously been reported to act as negative growth regulators in RPE [89,137].

Although an association between the HTRA1 rs11200638 G→A polymorphism and AMD was found, Kanda and others [95] considered that the rs11200638 G→A polymorphism of the HTRA1 gene did not make a major contribution to regulation of the HTRA1 gene and there is no association between HTRA1 G→A polymorphism and AMD. To verify these conclusions, they generated mammalian expression constructs carrying three different lengths of the normal HTRA1 promoter (WT-long, -medium, and -short) and the mutant sequence carrying the AMD-risk allele at the single nucleotide polymorphism (SNP) rs11200638 (SNP-long and -medium), and these constructs were transfected into human embryonic kidney293 (HEK293), human-derived retinal pigment epithelial (ARPE19), and Human retinoblastoma (Y79) cells. As a result, they found that WT and variant SNPs of the HTRA1 promoter activities did not show significant differences in the luciferase reporter expression, and the WT-short promoter (not including the rs11200638 region) showed higher transcriptional activities than the others. A further quantitative analysis provided no evidence for significant change of mRNA expression between control and AMD retinas. This finding contrasts with the previous original experiment, which suggested an increase in HTRA1 expression in lymphocytes from AMD patients [90,127]. Taken together, these studies seem to draw a conflicting conclusion to those of the other studies in our meta-analysis.

Localization of the LOC387715/ARMS2 protein to the mitochondrial outer membrane in transfected mammalian cells suggests intriguing mechanisms through which an A69S change may influence AMD susceptibility. Mitochondria are implicated in the pathogenesis of other age-related neurodegenerative diseases, including Alzheimer disease, Parkinson disease, and so on [138]. Mitochondrial dysfunction associated with aging can result in impairment of the energy metabolism and homeostasis, generation of reactive oxygen species, accumulation of somatic mutations in mitochondrial DNA, and activation of the apoptotic pathway [139-141]. Decreased number and size of mitochondria, loss of cristae, or reduced matrix density are observed in AMD retinas compared with controls, and mitochondrial DNA deletions and cytochrome c oxidase-deficient cones accumulate in the aging retina, particularly in the macular region [140,142]. Moreover, mutations in mitochondrial proteins (e.g., dynamin-like guanosine triphosphatase [GTPase] optic atrophy 1 [OPA1]) are associated with optic neurodegenerative disorders [143]. Photoreceptors and RPE contain high levels of polyunsaturated fatty acids and are exposed to intense light and near-arterial levels of oxygen, providing considerable risk for oxidative damage [143,144]. Kanda and others therefore propose that the altered function of the putative mitochondrial protein LOC387715/ARMS2 by A69S substitution increases the susceptibility to the aging-associated generation of macular photoreceptors [95]. However, they did not observe any significant difference in the expression, stability, or localization of the A69S variant LOC387715/ARMS2 protein in mammalian cells. It is plausible that the A69S alteration modifies the function of the LOC387715/ARMS2 protein by affecting its conformation and/or interaction. For this reason, additional analysis of the LOC387715/ARMS2 protein with Ala or Ser codon 69 and its function in vivo are needed to better understand its contribution to AMD pathogenesis.

Even though the results presented here are contradictory, the A allele of the HTRA1 gene rs11200638 G→A polymorphism is reasonably common, with an allele frequency of over 30% in a control population and over 40% in an Asian control population, and the T allele frequency of the LOC387715/ARMS2 rs10490924 G→T polymorphism was 25.17% in a control population and 38.67% in Asians. This means that the effect at the population level, especially for Asian populations, could be quite important. The proportion of AA and AG genotypes of the HTRA1 rs11200638 G→A polymorphism in a control population is 48% and the pooled OR for these two genotypes is 3.13. These two data were 64.07, 3.47 and 39.81, 3.07 for Asians and Caucasians, respectively. For the LOC387715/ARMS2 rs10490924 G→T polymorphism, the proportion of TT and GT genotypes in a control population is 38.89% and the pooled OR for these two genotypes is 3.05. These two data were 64.00, 3.17 and 35.40, 3.13 for Asians and Caucasians, respectively.

The PAR for the combined genotypes AA and AG of the HTRA1 rs11200638 G→A polymorphism is 56.0% (63.5% for Asians, 48.4% for Caucasians, 61.3% for wet AMD, 51.1% for combined AMD). The PAR for the combined genotypes TT and GT of LOC387715/ARMS2 gene rs10490924 G→T polymorphism is 47.9% (55.4% for Asians, 44.1% for Caucasians, 56.8% for wet AMD, 42.4% for combined AMD). In other words, the HTRA1 rs11200638 G→A polymorphism is involved in over half of all cases of AMD, quite close to the previous estimate of the first major AMD-susceptibility allele, CFH Y402H (58.9%) [79]. The LOC387715/ARMS2 rs10490924 G→T polymorphism is also involved in nearly half of all AMD cases. Higher PAR can explain part of why both these genes (HTRA1 rs11200638 G→A polymorphism and LOC387715/ARMS2 rs10490924 G→T polymorphism) play important roles in AMD, especially for wet AMD populations.

In conclusion, this Human Genome Epidemiology (HuGE) systematic review presents strong evidence for an association between the HTRA1 rs11200638 G→A polymorphism, LOC387715/ARMS2 rs10490924 G→T polymorphism, and AMD, and suggests that both of these genes play important roles in this disease. Potential gene-gene and gene-environmental interactions and possible mechanisms of AMD are also summarized and discussed. Our findings suggest that these genetic variations may serve as biomarkers enabling the diagnosis of AMD in a more efficient and economical way. However, large-scale, long-term longitudinal studies are required to substantiate and strengthen this association.

Acknowledgments

The research was Supported by National Natural Science Foundation of China (No. 30772343, No. 30800633 and No. 30700908), Science and Technology breakthrough Project of Science and Technology Department of Sichuan Province (No.2007SGY022) and Sichuan Province Science and Technology Foundation for Youths (No. 09ZQ026–034). The authors thank Dr. Huaigong Chen for checking coding of some of the data. They also thank Dr. Kanda and Dr. Hughes who kindly provided genotype and allele frequency data for the meta-analyses.

References

  • 1.Bandello F, Lafuma A, Berdeaux G. Public health impact of neovascular age-related macular degeneration treatments extrapolated from visual acuity. Invest Ophthalmol Vis Sci. 2007;48:96–103. doi: 10.1167/iovs.06-0283. [DOI] [PubMed] [Google Scholar]
  • 2.Bird AC. The Bowman lecture. Towards an understanding of age-related macular disease. Eye. 2003;17:457–66. doi: 10.1038/sj.eye.6700562. [DOI] [PubMed] [Google Scholar]
  • 3.Cruess AF, Zlateva G, Xu X, Soubrane G, Pauleikhoff D, Lotery A, Mones J, Buggage R, Schaefer C, Knight T, Goss TF. Economic burden of bilateral neovascular age-related macular degeneration: multi-country observational study. Pharmacoeconomics. 2008;26:57–73. doi: 10.2165/00019053-200826010-00006. [DOI] [PubMed] [Google Scholar]
  • 4.Evans JR, Fletcher AE, Wormald RP. 28,000 Cases of age related macular degeneration causing visual loss in people aged 75 years and above in the United Kingdom may be attributable to smoking. Br J Ophthalmol. 2005;89:550–3. doi: 10.1136/bjo.2004.049726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Klein R, Klein BE, Linton KL. Prevalence of age-related maculopathy. The Beaver Dam Eye Study. Ophthalmology. 1992;99:933–43. doi: 10.1016/s0161-6420(92)31871-8. [DOI] [PubMed] [Google Scholar]
  • 6.Muñoz B, Klein R, Rodriguez J, Snyder R, West SK. Prevalence of age-related macular degeneration in a population-based sample of Hispanic people in Arizona: Proyecto VER. Arch Ophthalmol. 2005;123:1575–80. doi: 10.1001/archopht.123.11.1575. [DOI] [PubMed] [Google Scholar]
  • 7.Owen CG, Fletcher AE, Donoghue M, Rudnicka AR. How big is the burden of visual loss caused by age related macular degeneration in the United Kingdom? Br J Ophthalmol. 2003;87:312–7. doi: 10.1136/bjo.87.3.312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Rosenberg T, Klie F. The incidence of registered blindness caused by age-related macular degeneration. Acta Ophthalmol Scand. 1996;74:399–402. doi: 10.1111/j.1600-0420.1996.tb00717.x. [DOI] [PubMed] [Google Scholar]
  • 9.Schick JH, Iyengar SK, Klein BE, Klein R, Reading K, Liptak R, Millard C, Lee KE, Tomany SC, Moore EL, Fijal BA, Elston RC. A whole-genome screen of a quantitative trait of age-related maculopathy in sibships from the Beaver Dam Eye Study. Am J Hum Genet. 2003;72:1412–24. doi: 10.1086/375500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Soubrane G, Coscas G. Age-related macular degeneration. Rev Prat. 1996;46:1722–9. [PubMed] [Google Scholar]
  • 11.Vinding T. Visual impairment of age-related macular degeneration. An epidemiological study of 1000 aged individuals. Acta Ophthalmol (Copenh) 1990;68:162–7. doi: 10.1111/j.1755-3768.1990.tb01898.x. [DOI] [PubMed] [Google Scholar]
  • 12.Vingerling JR, Dielemans I, Hofman A, Grobbee DE, Hijmering M, Kramer CF, de Jong PT. The prevalence of age-related maculopathy in the Rotterdam Study. Ophthalmology. 1995;102:205–10. doi: 10.1016/s0161-6420(95)31034-2. [DOI] [PubMed] [Google Scholar]
  • 13.Xu L, Wang Y, Li Y, Wang Y, Cui T, Li J, Jonas JB. Causes of blindness and visual impairment in urban and rural areas in Beijing: the Beijing Eye Study. Ophthalmology. 2006;113:1134.e1–11. doi: 10.1016/j.ophtha.2006.01.035. [DOI] [PubMed] [Google Scholar]
  • 14.Bonastre J, Le Pen C, Anderson P, Ganz A, Berto P, Berdeaux G. The epidemiology, economics and quality of life burden of age-related macular degeneration in France, Germany, Italy and the United Kingdom. Eur J Health Econ. 2002;3:94–102. doi: 10.1007/s10198-002-0104-y. [DOI] [PubMed] [Google Scholar]
  • 15.Age-Related Eye Disease Study Research Group Risk factors associated with age-related macular degeneration. A case-control study in the age-related eye disease study: Age-Related Eye Disease Study Report Number 3. Ophthalmology. 2000;107:2224–32. doi: 10.1016/s0161-6420(00)00409-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Bressler NM, Bressler SB, Congdon NG, Ferris FL, 3rd, Friedman DS, Klein R, Lindblad AS, Milton RC, Seddon JM, Age-Related Eye Disease Study Research Group. Potential public health impact of Age-Related Eye Disease Study results: AREDS report no. 11. Arch Ophthalmol. 2003;121:1621–4. doi: 10.1001/archopht.121.11.1621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Clemons TE, Milton RC, Klein R, Seddon JM, Ferris FL, 3rd, Age-Related Eye Disease Study Research Group. Risk factors for the incidence of Advanced Age-Related Macular Degeneration in the Age-Related Eye Disease Study (AREDS) AREDS report no. 19. Ophthalmology. 2005;112:533–9. doi: 10.1016/j.ophtha.2004.10.047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Klein R. Overview of progress in the epidemiology of age-related macular degeneration. Ophthalmic Epidemiol. 2007;14:184–7. doi: 10.1080/09286580701344381. [DOI] [PubMed] [Google Scholar]
  • 19.Klein R, Peto T, Bird A, Vannewkirk MR. The epidemiology of age-related macular degeneration. Am J Ophthalmol. 2004;137:486–95. doi: 10.1016/j.ajo.2003.11.069. [DOI] [PubMed] [Google Scholar]
  • 20.Seddon JM, Chen CA. The epidemiology of age-related macular degeneration. Int Ophthalmol Clin. 2004;44:17–39. doi: 10.1097/00004397-200404440-00004. [DOI] [PubMed] [Google Scholar]
  • 21.Haddad S, Chen CA, Santangelo SL, Seddon JM. The genetics of age-related macular degeneration: a review of progress to date. Surv Ophthalmol. 2006;51:316–63. doi: 10.1016/j.survophthal.2006.05.001. [DOI] [PubMed] [Google Scholar]
  • 22.Montezuma SR, Sobrin L, Seddon JM. Review of genetics in age related macular degeneration. Semin Ophthalmol. 2007;22:229–40. doi: 10.1080/08820530701745140. [DOI] [PubMed] [Google Scholar]
  • 23.Rakic JM. Multifactorial influences on age-related macular degeneration. Bull Soc Belge Ophtalmol. 2006;(301):9–11. [PubMed] [Google Scholar]
  • 24.Scholl HP, Fleckenstein M, Charbel Issa P, Keilhauer C, Holz FG, Weber BH. An update on the genetics of age-related macular degeneration. Mol Vis. 2007;13:196–205. [PMC free article] [PubMed] [Google Scholar]
  • 25.Tuo J, Bojanowski CM, Chan CC. Genetic factors of age-related macular degeneration. Prog Retin Eye Res. 2004;23:229–49. doi: 10.1016/j.preteyeres.2004.02.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Asleh SA, Chowers I. Ethnic background as a risk factor for advanced age-related macular degeneration in Israel. Isr Med Assoc J. 2007;9:656–8. [PubMed] [Google Scholar]
  • 27.Francis PJ, George S, Schultz DW, Rosner B, Hamon S, Ott J, Weleber RG, Klein ML, Seddon JM. The LOC387715 gene, smoking, body mass index, environmental associations with advanced age-related macular degeneration. Hum Hered. 2007;63:212–8. doi: 10.1159/000100046. [DOI] [PubMed] [Google Scholar]
  • 28.Moeller SM, Jacques PF, Blumberg JB. The potential role of dietary xanthophylls in cataract and age-related macular degeneration. J Am Coll Nutr. 2000;19:522S–7S. doi: 10.1080/07315724.2000.10718975. [DOI] [PubMed] [Google Scholar]
  • 29.Seddon JM, George S, Rosner B. Cigarette smoking, fish consumption, omega-3 fatty acid intake, and associations with age-related macular degeneration: the US Twin Study of Age-Related Macular Degeneration. Arch Ophthalmol. 2006;124:995–1001. doi: 10.1001/archopht.124.7.995. [DOI] [PubMed] [Google Scholar]
  • 30.Seddon JM, George S, Rosner B, Klein ML. CFH gene variant, Y402H, and smoking, body mass index, environmental associations with advanced age-related macular degeneration. Hum Hered. 2006;61:157–65. doi: 10.1159/000094141. [DOI] [PubMed] [Google Scholar]
  • 31.Arnarsson A, Sverrisson T, Stefánsson E, Sigurdsson H, Sasaki H, Sasaki K, Jonasson F. Risk factors for five-year incident age-related macular degeneration: the Reykjavik Eye Study. Am J Ophthalmol. 2006;142:419–28. doi: 10.1016/j.ajo.2006.04.015. [DOI] [PubMed] [Google Scholar]
  • 32.Chong EW, Kreis AJ, Wong TY, Simpson JA, Guymer RH. Alcohol consumption and the risk of age-related macular degeneration: a systematic review and meta-analysis. Am J Ophthalmol. 2008;145:707–15. doi: 10.1016/j.ajo.2007.12.005. [DOI] [PubMed] [Google Scholar]
  • 33.Douglas IJ, Cook C, Chakravarthy U, Hubbard R, Fletcher AE, Smeeth L. A case-control study of drug risk factors for age-related macular degeneration. Ophthalmology. 2007;114:1164–9. doi: 10.1016/j.ophtha.2006.09.018. [DOI] [PubMed] [Google Scholar]
  • 34.Evans JR. Risk factors for age-related macular degeneration. Prog Retin Eye Res. 2001;20:227–53. doi: 10.1016/s1350-9462(00)00023-9. [DOI] [PubMed] [Google Scholar]
  • 35.Fraser-Bell S, Wu J, Klein R, Azen SP, Varma R. Smoking, alcohol intake, estrogen use, and age-related macular degeneration in Latinos: the Los Angeles Latino Eye Study. Am J Ophthalmol. 2006;141:79–87. doi: 10.1016/j.ajo.2005.08.024. [DOI] [PubMed] [Google Scholar]
  • 36.Knudtson MD, Klein R, Klein BE. Alcohol consumption and the 15-year cumulative incidence of age-related macular degeneration. Am J Ophthalmol. 2007;143:1026–9. doi: 10.1016/j.ajo.2007.01.036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Klaver CC, Wolfs RC, Assink JJ, van Duijn CM, Hofman A, de Jong PT. Genetic risk of age-related maculopathy. Population-based familial aggregation study. Arch Ophthalmol. 1998;116:1646–51. doi: 10.1001/archopht.116.12.1646. [DOI] [PubMed] [Google Scholar]
  • 38.Luo L, Harmon J, Yang X, Chen H, Patel S, Mineau G, Yang Z, Constantine R, Buehler J, Kaminoh Y, Ma X, Wong TY, Zhang M, Zhang K. Familial aggregation of age-related macular degeneration in the Utah population. Vision Res. 2008;48:494–500. doi: 10.1016/j.visres.2007.11.013. [DOI] [PubMed] [Google Scholar]
  • 39.Gottfredsdottir MS, Sverrisson T, Musch DC, Stefánsson E. Age related macular degeneration in monozygotic twins and their spouses in Iceland. Acta Ophthalmol Scand. 1999;77:422–5. doi: 10.1034/j.1600-0420.1999.770413.x. [DOI] [PubMed] [Google Scholar]
  • 40.Grizzard SW, Arnett D, Haag SL. Twin study of age-related macular degeneration. Ophthalmic Epidemiol. 2003;10:315–22. doi: 10.1076/opep.10.5.315.17317. [DOI] [PubMed] [Google Scholar]
  • 41.Meyers SM. A twin study on age-related macular degeneration. Trans Am Ophthalmol Soc. 1994;92:775–843. [PMC free article] [PubMed] [Google Scholar]
  • 42.Meyers SM, Greene T, Gutman FA. A twin study of age-related macular degeneration. Am J Ophthalmol. 1995;120:757–66. doi: 10.1016/s0002-9394(14)72729-1. [DOI] [PubMed] [Google Scholar]
  • 43.Seddon JM, Cote J, Page WF, Aggen SH, Neale MC. The US twin study of age-related macular degeneration: relative roles of genetic and environmental influences. Arch Ophthalmol. 2005;123:321–7. doi: 10.1001/archopht.123.3.321. [DOI] [PubMed] [Google Scholar]
  • 44.Allikmets R, Shroyer NF, Singh N, Seddon JM, Lewis RA, Bernstein PS, Peiffer A, Zabriskie NA, Li Y, Hutchinson A, Dean M, Lupski JR, Leppert M. Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science. 1997;277:1805–7. doi: 10.1126/science.277.5333.1805. [DOI] [PubMed] [Google Scholar]
  • 45.De La Paz MA, Guy VK, Abou-Donia S, Heinis R, Bracken B, Vance JM, Gilbert JR, Gass JD, Haines JL, Pericak-Vance MA. Analysis of the Stargardt disease gene (ABCR) in age-related macular degeneration. Ophthalmology. 1999;106:1531–6. doi: 10.1016/S0161-6420(99)90449-9. [DOI] [PubMed] [Google Scholar]
  • 46.Rivera A, White K, Stöhr H, Steiner K, Hemmrich N, Grimm T, Jurklies B, Lorenz B, Scholl HP, Apfelstedt-Sylla E, Weber BH. A comprehensive survey of sequence variation in the ABCA4 (ABCR) gene in Stargardt disease and age-related macular degeneration. Am J Hum Genet. 2000;67:800–13. doi: 10.1086/303090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Baird PN, Richardson AJ, Robman LD, Dimitrov PN, Tikellis G, McCarty CA, Guymer RH. Apolipoprotein (APOE) gene is associated with progression of age-related macular degeneration (AMD). Hum Mutat. 2006;27:337–42. doi: 10.1002/humu.20288. [DOI] [PubMed] [Google Scholar]
  • 48.Friedman DA, Lukiw WJ, Hill JM. Apolipoprotein E epsilon4 offers protection against age-related macular degeneration. Med Hypotheses. 2007;68:1047–55. doi: 10.1016/j.mehy.2006.09.049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Nowak M, Swietochowska E, Szapska B, Marek B, Wielkoszyński T, Kozioł H, Klimek J, Kajdaniuk D, Kos-Kudła B, Ostrowska Z, Karpe J, Głogowska-Szelag J, Siemińska L. The apolipoprotein E polymorphism in age related macular degeneration. Klin Oczna. 2004;106:427–8. [PubMed] [Google Scholar]
  • 50.Schmidt S, Saunders AM, De La Paz MA, Postel EA, Heinis RM, Agarwal A, Scott WK, Gilbert JR, McDowell JG, Bazyk A, Gass JD, Haines JL, Pericak-Vance MA. Association of the apolipoprotein E gene with age-related macular degeneration: possible effect modification by family history, age, and gender. Mol Vis. 2000;6:287–93. [PubMed] [Google Scholar]
  • 51.Simonelli F, Margaglione M, Testa F, Cappucci G, Manitto MP, Brancato R, Rinaldi E. Apolipoprotein E polymorphisms in age-related macular degeneration in an Italian population. Ophthalmic Res. 2001;33:325–8. doi: 10.1159/000055688. [DOI] [PubMed] [Google Scholar]
  • 52.Thakkinstian A, Bowe S, McEvoy M, Smith W, Attia J. Association between apolipoprotein E polymorphisms and age-related macular degeneration: A HuGE review and meta-analysis. Am J Epidemiol. 2006;164:813–22. doi: 10.1093/aje/kwj279. [DOI] [PubMed] [Google Scholar]
  • 53.Tuo J, Ning B, Bojanowski CM, Lin ZN, Ross RJ, Reed GF, Shen D, Jiao X, Zhou M, Chew EY, Kadlubar FF, Chan CC. Synergic effect of polymorphisms in ERCC6 5′ flanking region and complement factor H on age-related macular degeneration predisposition. Proc Natl Acad Sci USA. 2006;103:9256–61. doi: 10.1073/pnas.0603485103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Stone EM, Braun TA, Russell SR, Kuehn MH, Lotery AJ, Moore PA, Eastman CG, Casavant TL, Sheffield VC. Missense variations in the fibulin 5 gene and age-related macular degeneration. N Engl J Med. 2004;351:346–53. doi: 10.1056/NEJMoa040833. [DOI] [PubMed] [Google Scholar]
  • 55.Fisher SA, Rivera A, Fritsche LG, Keilhauer CN, Lichtner P, Meitinger T, Rudolph G, Weber BH. Case-control genetic association study of fibulin-6 (FBLN6 or HMCN1) variants in age-related macular degeneration (AMD). Hum Mutat. 2007;28:406–13. doi: 10.1002/humu.20464. [DOI] [PubMed] [Google Scholar]
  • 56.Schultz DW, Weleber RG, Lawrence G, Barral S, Majewski J, Acott TS, Klein ML. HEMICENTIN-1 (FIBULIN-6) and the 1q31 AMD locus in the context of complex disease: review and perspective. Ophthalmic Genet. 2005;26:101–5. doi: 10.1080/13816810590968023. [DOI] [PubMed] [Google Scholar]
  • 57.Ayyagari R, Zhang K, Hutchinson A, Yu Z, Swaroop A, Kakuk LE, Seddon JM, Bernstein PS, Lewis RA, Tammur J, Yang Z, Li Y, Zhang H, Yashar BM, Liu J, Petrukhin K, Sieving PA, Allikmets R. Evaluation of the ELOVL4 gene in patients with age-related macular degeneration. Ophthalmic Genet. 2001;22:233–9. doi: 10.1076/opge.22.4.233.2219. [DOI] [PubMed] [Google Scholar]
  • 58.DeAngelis MM, Ji F, Kim IK, Adams S, Capone A, Jr, Ott J, Miller JW, Dryja TP. Cigarette smoking, CFH, APOE, ELOVL4, and risk of neovascular age-related macular degeneration. Arch Ophthalmol. 2007;125:49–54. doi: 10.1001/archopht.125.1.49. [DOI] [PubMed] [Google Scholar]
  • 59.Seitsonen S, Lemmelä S, Holopainen J, Tommila P, Ranta P, Kotamies A, Moilanen J, Palosaari T, Kaarniranta K, Meri S, Immonen I, Järvelä I. Analysis of variants in the complement factor H, the elongation of very long chain fatty acids-like 4 and the hemicentin 1 genes of age-related macular degeneration in the Finnish population. Mol Vis. 2006;12:796–801. [PubMed] [Google Scholar]
  • 60.Gold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ, Gehrs K, Cramer K, Neel J, Bergeron J, Barile GR, Smith RT. AMD Genetics Clinical Study Group, Hageman GS, Dean M, Allikmets R. Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet. 2006;38:458–62. doi: 10.1038/ng1750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Despriet DD, Bergen AA, Merriam JE, Zernant J, Barile GR, Smith RT, Barbazetto IA, van Soest S, Bakker A, de Jong PT, Allikmets R, Klaver CC. Comprehensive analysis of the candidate genes CCL2, CCR2, and TLR4 in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2008;49:364–71. doi: 10.1167/iovs.07-0656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Kaur I, Hussain A, Hussain N, Das T, Pathangay A, Mathai A, Hussain A, Nutheti R, Nirmalan PK, Chakrabarti S. Analysis of CFH, TLR4, and APOE polymorphism in India suggests the Tyr402His variant of CFH to be a global marker for age-related macular degeneration. Invest Ophthalmol Vis Sci. 2006;47:3729–35. doi: 10.1167/iovs.05-1430. [DOI] [PubMed] [Google Scholar]
  • 63.Zareparsi S, Buraczynska M, Branham KE, Shah S, Eng D, Li M, Pawar H, Yashar BM, Moroi SE, Lichter PR, Petty HR, Richards JE, Abecasis GR, Elner VM, Swaroop A. Toll-like receptor 4 variant D299G is associated with susceptibility to age-related macular degeneration. Hum Mol Genet. 2005;14:1449–55. doi: 10.1093/hmg/ddi154. [DOI] [PubMed] [Google Scholar]
  • 64.Churchill AJ, Carter JG, Lovell HC, Ramsden C, Turner SJ, Yeung A, Escardo J, Atan D. VEGF polymorphisms are associated with neovascular age-related macular degeneration. Hum Mol Genet. 2006;15:2955–61. doi: 10.1093/hmg/ddl238. [DOI] [PubMed] [Google Scholar]
  • 65.Fisher SA, Abecasis GR, Yashar BM, Zareparsi S, Swaroop A, Iyengar SK, Klein BE, Klein R, Lee KE, Majewski J, Schultz DW, Klein ML, Seddon JM, Santangelo SL, Weeks DE, Conley YP, Mah TS, Schmidt S, Haines JL, Pericak-Vance MA, Gorin MB, Schulz HL, Pardi F, Lewis CM, Weber BH. Meta-analysis of genome scans of age-related macular degeneration. Hum Mol Genet. 2005;14:2257–64. doi: 10.1093/hmg/ddi230. [DOI] [PubMed] [Google Scholar]
  • 66.Barral S, Francis PJ, Schultz DW, Schain MB, Haynes C, Majewski J, Ott J, Acott T, Weleber RG, Klein ML. Expanded genome scan in extended families with age-related macular degeneration. Invest Ophthalmol Vis Sci. 2006;47:5453–9. doi: 10.1167/iovs.06-0655. [DOI] [PubMed] [Google Scholar]
  • 67.Santangelo SL, Yen CH, Haddad S, Fagerness J, Huang C, Seddon JM. A discordant sib-pair linkage analysis of age-related macular degeneration. Ophthalmic Genet. 2005;26:61–7. doi: 10.1080/13816810490967944. [DOI] [PubMed] [Google Scholar]
  • 68.Seddon JM, Santangelo SL, Book K, Chong S, Cote J. A genomewide scan for age-related macular degeneration provides evidence for linkage to several chromosomal regions. Am J Hum Genet. 2003;73:780–90. doi: 10.1086/378505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Kim NR, Kang JH, Kwon OW, Lee SJ, Oh JH, Chin HS. Association between complement factor H gene polymorphisms and neovascular age-related macular degeneration in Koreans. Invest Ophthalmol Vis Sci. 2008;49:2071–6. doi: 10.1167/iovs.07-1195. [DOI] [PubMed] [Google Scholar]
  • 70.Francis PJ, Schultz DW, Hamon S, Ott J, Weleber RG, Klein ML. Haplotypes in the Complement Factor H (CFH) Gene: Associations with Drusen and Advanced Age-Related Macular Degeneration. PLoS ONE. 2007;2:e1197. doi: 10.1371/journal.pone.0001197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Kaare M, Seitsonen S, Jarvela I, Meri S, Laivuori H. Complement factor H Y402H polymorphism and characteristics of exudative age-related macular degeneration lesions. Acta Ophthalmol Scand. 2008;86:390–4. doi: 10.1111/j.1600-0420.2007.01050.x. [DOI] [PubMed] [Google Scholar]
  • 72.Wegscheider BJ, Weger M, Renner W, Steinbrugger I, März W, Mossböck G, Temmel W, El-Shabrawi Y, Schmut O, Jahrbacher R, Haas A. Association of complement factor H Y402H gene polymorphism with different subtypes of exudative age-related macular degeneration. Ophthalmology. 2007;114:738–42. doi: 10.1016/j.ophtha.2006.07.048. [DOI] [PubMed] [Google Scholar]
  • 73.Narayanan R, Butani V, Boyer DS, Atilano SR, Resende GP, Kim DS, Chakrabarti S, Kuppermann BD, Khatibi N, Chwa M, Nesburn AB, Kenney MC. Complement factor H polymorphism in age-related macular degeneration. Ophthalmology. 2007;114:1327–31. doi: 10.1016/j.ophtha.2006.10.035. [DOI] [PubMed] [Google Scholar]
  • 74.Chen LJ, Liu DT, Tam PO, Chan WM, Liu K, Chong KK, Lam DS, Pang CP. Association of complement factor H polymorphisms with exudative age-related macular degeneration. Mol Vis. 2006;12:1536–42. [PubMed] [Google Scholar]
  • 75.Baird PN, Islam FM, Richardson AJ, Cain M, Hunt N, Guymer R. Analysis of the Y402H variant of the complement factor H gene in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2006;47:4194–8. doi: 10.1167/iovs.05-1285. [DOI] [PubMed] [Google Scholar]
  • 76.Maller J, George S, Purcell S, Fagerness J, Altshuler D, Daly MJ, Seddon JM. Common variation in three genes, including a noncoding variant in CFH, strongly influences risk of age-related macular degeneration. Nat Genet. 2006;38:1055–9. doi: 10.1038/ng1873. [DOI] [PubMed] [Google Scholar]
  • 77.Souied EH, Leveziel N, Richard F, Dragon-Durey MA, Coscas G, Soubrane G, Benlian P, Fremeaux-Bacchi V. Y402H complement factor H polymorphism associated with exudative age-related macular degeneration in the French population. Mol Vis. 2005;11:1135–40. [PubMed] [Google Scholar]
  • 78.Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J. Complement factor H polymorphism in age-related macular degeneration. Science. 2005;308:385–9. doi: 10.1126/science.1109557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Thakkinstian A, Han P, McEvoy M, Smith W, Hoh J, Magnusson K, Zhang K, Attia J. Systematic review and meta-analysis of the association between complement factor H Y402H polymorphisms and age-related macular degeneration. Hum Mol Genet. 2006;15:2784–90. doi: 10.1093/hmg/ddl220. [DOI] [PubMed] [Google Scholar]
  • 80.Okamoto H, Umeda S, Obazawa M, Minami M, Noda T, Mizota A, Honda M, Tanaka M, Koyama R, Takagi I, Sakamoto Y, Saito Y, Miyake Y, Iwata T. Complement factor H polymorphisms in Japanese population with age-related macular degeneration. Mol Vis. 2006;12:156–8. [PubMed] [Google Scholar]
  • 81.Uka J, Tamura H, Kobayashi T, Yamane K, Kawakami H, Minamoto A, Mishima HK. No association of complement factor H gene polymorphism and age-related macular degeneration in the Japanese population. Retina. 2006;26:985–7. doi: 10.1097/01.iae.0000244068.18520.3e. [DOI] [PubMed] [Google Scholar]
  • 82.Schmidt S, Hauser MA, Scott WK, Postel EA, Agarwal A, Gallins P, Wong F, Chen YS, Spencer K, Schnetz-Boutaud N, Haines JL, Pericak-Vance MA. Cigarette smoking strongly modifies the association of LOC387715 and age-related macular degeneration. Am J Hum Genet. 2006;78:852–64. doi: 10.1086/503822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Jakobsdottir J, Conley YP, Weeks DE, Mah TS, Ferrell RE, Gorin MB. Susceptibility genes for age-related maculopathy on chromosome 10q26. Am J Hum Genet. 2005;77:389–407. doi: 10.1086/444437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Rivera A, Fisher SA, Fritsche LG, Keilhauer CN, Lichtner P, Meitinger T, Weber BH. Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum Mol Genet. 2005;14:3227–36. doi: 10.1093/hmg/ddi353. [DOI] [PubMed] [Google Scholar]
  • 85.Tocharus J, Tsuchiya A, Kajikawa M, Ueta Y, Oka C, Kawaichi M. Developmentally regulated expression of mouse HtrA3 and its role as an inhibitor of TGF-beta signaling. Dev Growth Differ. 2004;46:257–74. doi: 10.1111/j.1440-169X.2004.00743.x. [DOI] [PubMed] [Google Scholar]
  • 86.Miyake K, Horikawa Y, Hara K, Yasuda K, Osawa H, Furuta H, Hirota Y, Yamagata K, Hinokio Y, Oka Y, Iwasaki N, Iwamoto Y, Yamada Y, Seino Y, Maegawa H, Kashiwagi A, Yamamoto K, Tokunaga K, Takeda J, Makino H, Nanjo K, Kadowaki T, Kasuga M. Association of TCF7L2 polymorphisms with susceptibility to type 2 diabetes in 4,087 Japanese subjects. J Hum Genet. 2008;53:174–80. doi: 10.1007/s10038-007-0231-5. [DOI] [PubMed] [Google Scholar]
  • 87.Ly DH, Lockhart DJ, Lerner RA, Schultz PG. Mitotic misregulation and human aging. Science. 2000;287:2486–92. doi: 10.1126/science.287.5462.2486. [DOI] [PubMed] [Google Scholar]
  • 88.Grau S, Richards PJ, Kerr B, Hughes C, Caterson B, Williams AS, Junker U, Jones SA, Clausen T, Ehrmann M. The role of human HtrA1 in arthritic disease. J Biol Chem. 2006;281:6124–9. doi: 10.1074/jbc.M500361200. [DOI] [PubMed] [Google Scholar]
  • 89.Oka C, Tsujimoto R, Kajikawa M, Koshiba-Takeuchi K, Ina J, Yano M, Tsuchiya A, Ueta Y, Soma A, Kanda H, Matsumoto M, Kawaichi M. HtrA1 serine protease inhibits signaling mediated by Tgfbeta family proteins. Development. 2004;131:1041–53. doi: 10.1242/dev.00999. [DOI] [PubMed] [Google Scholar]
  • 90.Yang Z, Camp NJ, Sun H, Tong Z, Gibbs D, Cameron DJ, Chen H, Zhao Y, Pearson E, Li X, Chien J, Dewan A, Harmon J, Bernstein PS, Shridhar V, Zabriskie NA, Hoh J, Howes K, Zhang K. A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science. 2006;314:992–3. doi: 10.1126/science.1133811. [DOI] [PubMed] [Google Scholar]
  • 91.Cameron DJ, Yang Z, Gibbs D, Chen H, Kaminoh Y, Jorgensen A, Zeng J, Luo L, Brinton E, Brinton G, Brand JM, Bernstein PS, Zabriskie NA, Tang S, Constantine R, Tong Z, Zhang K. HTRA1 variant confers similar risks to geographic atrophy and neovascular age-related macular degeneration. Cell Cycle. 2007;6:1122–5. doi: 10.4161/cc.6.9.4157. [DOI] [PubMed] [Google Scholar]
  • 92.Cameron DJ, Yang Z, Tong Z, Zhao Y, Praggastis A, Brinton E, Harmon J, Chen Y, Pearson E, Bernstein PS, Brinton G, Li X, Jorgensen A, Schneider S, Gibbs D, Chen H, Wang C, Howes K, Camp NJ, Zhang K. 10q26 is associated with increased risk of age-related macular degeneration in the Utah population. Adv Exp Med Biol. 2008;613:253–8. doi: 10.1007/978-0-387-74904-4_29. [DOI] [PubMed] [Google Scholar]
  • 93.Pulido JS, Peterson LM, Mutapcic L, Bryant S, Highsmith WE. LOC387715/HTRA1 and complement factor H variants in patients with age-related macular degeneration seen at the mayo clinic. Ophthalmic Genet. 2007;28:203–7. doi: 10.1080/13816810701649617. [DOI] [PubMed] [Google Scholar]
  • 94.Gibbs D, Yang Z, Constantine R, Ma X, Camp NJ, Yang X, Chen H, Jorgenson A, Hau V, Dewan A, Zeng J, Harmon J, Buehler J, Brand JM, Hoh J, Cameron DJ, Dixit M, Tong Z, Zhang K. Further mapping of 10q26 supports strong association of HTRA1 polymorphisms with age-related macular degeneration. Vision Res. 2008;48:685–9. doi: 10.1016/j.visres.2007.10.022. [DOI] [PubMed] [Google Scholar]
  • 95.Kanda A, Chen W, Othman M, Branham KE, Brooks M, Khanna R, He S, Lyons R, Abecasis GR, Swaroop A. A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, is strongly associated with age-related macular degeneration. Proc Natl Acad Sci USA. 2007;104:16227–32. doi: 10.1073/pnas.0703933104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Deangelis MM, Ji F, Adams S, Morrison MA, Harring AJ, Sweeney MO, Capone A, Jr, Miller JW, Dryja TP, Ott J, Kim IK. Alleles in the HtrA Serine Peptidase 1 Gene Alter the Risk of Neovascular Age-Related Macular Degeneration. Ophthalmology. 2008;115:1209–15. doi: 10.1016/j.ophtha.2007.10.032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Chen H, Yang Z, Gibbs D, Yang X, Hau V, Zhao P, Ma X, Zeng J, Luo L, Pearson E, Constantine R, Kaminoh Y, Harmon J, Tong Z, Stratton CA, Cameron DJ, Tang S, Zhang K. Association of HTRA1 polymorphism and bilaterality in advanced age-related macular degeneration. Vision Res. 2008;48:690–4. doi: 10.1016/j.visres.2007.10.014. [DOI] [PubMed] [Google Scholar]
  • 98.Weger M, Renner W, Steinbrugger I, Köfer K, Wedrich A, Groselj-Strele A, El-Shabrawi Y, Schmut O, Haas A. Association of the HTRA1 −625G>A promoter gene polymorphism with exudative age-related macular degeneration in a Central European population. Mol Vis. 2007;13:1274–9. [PubMed] [Google Scholar]
  • 99.Leveziel N, Souied EH, Richard F, Barbu V, Zourdani A, Morineau G, Zerbib J, Coscas G, Soubrane G, Benlian P. PLEKHA1–LOC387715-HTRA1 polymorphisms and exudative age-related macular degeneration in the French population. Mol Vis. 2007;13:2153–9. [PubMed] [Google Scholar]
  • 100.Hughes AE, Orr N, Patterson C, Esfandiary H, Hogg R, McConnell V, Silvestri G, Chakravarthy U. Neovascular age-related macular degeneration risk based on CFH, LOC387715/HTRA1, and smoking. PLoS Med. 2007;4:e355. doi: 10.1371/journal.pmed.0040355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Dewan A, Liu M, Hartman S, Zhang SS, Liu DT, Zhao C, Tam PO, Chan WM, Lam DS, Snyder M, Barnstable C, Pang CP, Hoh J. HTRA1 promoter polymorphism in wet age-related macular degeneration. Science. 2006;314:989–92. doi: 10.1126/science.1133807. [DOI] [PubMed] [Google Scholar]
  • 102.Lu F, Hu J, Zhao P, Lin Y, Yang Y, Liu X, Fan Y, Chen B, Liao S, Du Q, Lei C, Cameron DJ, Zhang K, Yang Z. HTRA1 variant increases risk to neovascular age-related macular degeneration in Chinese population. Vision Res. 2007;47:3120–3. doi: 10.1016/j.visres.2007.08.010. [DOI] [PubMed] [Google Scholar]
  • 103.Lin JM, Wan L, Tsai YY, Lin HJ, Tsai Y, Lee CC, Tsai CH, Tsai FJ, Tseng SH. HTRA1 polymorphism in dry and wet age-related macular degeneration. Retina. 2008;28:309–13. doi: 10.1097/IAE.0b013e31814cef3a. [DOI] [PubMed] [Google Scholar]
  • 104.Tam PO, Ng TK, Liu DT, Chan WM, Chiang SW, Chen LJ, DeWan A, Hoh J, Lam DS, Pang CP. HTRA1 Variants in Exudative Age-related Macular Degeneration and Interactions with Smoking and CFH. Invest Ophthalmol Vis Sci. 2008;49:2357–65. doi: 10.1167/iovs.07-1520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Mori K, Horie-Inoue K, Kohda M, Kawasaki I, Gehlbach PL, Awata T, Yoneya S, Okazaki Y, Inoue S. Association of the HTRA1 gene variant with age-related macular degeneration in the Japanese population. J Hum Genet. 2007;52:636–41. doi: 10.1007/s10038-007-0162-1. [DOI] [PubMed] [Google Scholar]
  • 106.Kondo N, Honda S, Ishibashi K, Tsukahara Y, Negi A. LOC387715/HTRA1 variants in polypoidal choroidal vasculopathy and age-related macular degeneration in a Japanese population. Am J Ophthalmol. 2007;144:608–12. doi: 10.1016/j.ajo.2007.06.003. [DOI] [PubMed] [Google Scholar]
  • 107.Yoshida T, DeWan A, Zhang H, Sakamoto R, Okamoto H, Minami M, Obazawa M, Mizota A, Tanaka M, Saito Y, Takagi I, Hoh J, Iwata T. HTRA1 promoter polymorphism predisposes Japanese to age-related macular degeneration. Mol Vis. 2007;13:545–8. [PMC free article] [PubMed] [Google Scholar]
  • 108.Kaur I, Katta S, Hussain A, Hussain N, Mathai A, Narayanan R, Hussain A, Reddy RK, Majji AB, Das T, Chakrabarti S. Variants in the 10q26 Gene Cluster (LOC387715 and HTRA1) Exhibit Enhanced Risk of Age-Related Macular Degeneration along with CFH in Indian Patients. Invest Ophthalmol Vis Sci. 2008;49:1771–6. doi: 10.1167/iovs.07-0560. [DOI] [PubMed] [Google Scholar]
  • 109.Rivera A, Fisher SA, Fritsche LG, Keilhauer CN, Lichtner P, Meitinger T, Weber BH. Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum Mol Genet. 2005;14:3227–36. doi: 10.1093/hmg/ddi353. [DOI] [PubMed] [Google Scholar]
  • 110.Egger M, Juni P, Bartlett C, Holenstein F, Sterne J. How important are comprehensive literature searches and the assessment of trial quality in systematic reviews? Empirical study. Health Technol Assess. 2003;7:1–76. [PubMed] [Google Scholar]
  • 111.Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283:2008–12. doi: 10.1001/jama.283.15.2008. [DOI] [PubMed] [Google Scholar]
  • 112.Chang YC, Chang TJ, Jiang YD, Kuo SS, Lee KC, Chiu KC, Chuang LM. Association study of the genetic polymorphisms of the transcription factor 7-like 2 (TCF7L2) gene and type 2 diabetes in the Chinese population. Diabetes. 2007;56:2631–7. doi: 10.2337/db07-0421. [DOI] [PubMed] [Google Scholar]
  • 113.Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48. [PubMed] [Google Scholar]
  • 114.DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88. doi: 10.1016/0197-2456(86)90046-2. [DOI] [PubMed] [Google Scholar]
  • 115.Lau J, Ioannidis JP, Schmid CH. Quantitative synthesis in systematic reviews. Ann Intern Med. 1997;127:820–6. doi: 10.7326/0003-4819-127-9-199711010-00008. [DOI] [PubMed] [Google Scholar]
  • 116.Minelli C, Thompson JR, Abrams KR, Lambert PC. Bayesian implementation of a genetic model-free approach to the meta-analysis of genetic association studies. Stat Med. 2005;24:3845–61. doi: 10.1002/sim.2393. [DOI] [PubMed] [Google Scholar]
  • 117.Emigh T. A comparison of tests for Hardy-Weinberg equilibrium. Biometrics. 1980;36:627–42. [PubMed] [Google Scholar]
  • 118.Trikalinos TA, Salanti G, Khoury MJ, Ioannidis JP. Impact of violations and deviations in Hardy-Weinberg equilibrium on postulated gene-disease associations. Am J Epidemiol. 2006;163:300–9. doi: 10.1093/aje/kwj046. [DOI] [PubMed] [Google Scholar]
  • 119.Sterne J, Bradburn M, Egger M. Meta-analysis in Stata. In: Egger M, Davey Smith G, Altman D, editors. Systematic reviews in health care. 2nd ed. Boston, MA: Blackwell BMJ Books; 2001. p. 347–69. [Google Scholar]
  • 120.Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60. doi: 10.1136/bmj.327.7414.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58. doi: 10.1002/sim.1186. [DOI] [PubMed] [Google Scholar]
  • 122.Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34. doi: 10.1136/bmj.315.7109.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Lau J, Antman EM, Jimenez-Silva J, Kupelnick B, Mosteller F, Chalmers TC. Cumulative meta-analysis of therapeutic trials for myocardial infarction. N Engl J Med. 1992;327:248–54. doi: 10.1056/NEJM199207233270406. [DOI] [PubMed] [Google Scholar]
  • 124.Stata Corporation. Stata statistical software, release 9.0. College Station, TX: Stata Corporation 2005. [Google Scholar]
  • 125.Spiegelhalter D, Thomas A, Best N, Lunn D. WinBUGS user manual. Version 1.4, January 2003. Cambridge, United Kingdom: MRC Biostatistics Unit, Institute of Public Health. 2003. http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/manual14.pdf [Google Scholar]
  • 126.Canfield AE, Hadfield KD, Rock CF, Wylie EC, Wilkinson FL. HtrA1: a novel regulator of physiological and pathological matrix mineralization? Biochem Soc Trans. 2007;35:669–71. doi: 10.1042/BST0350669. [DOI] [PubMed] [Google Scholar]
  • 127.DeWan A, Bracken MB, Hoh J. Two genetic pathways for age-related macular degeneration. Curr Opin Genet Dev. 2007;17:228–33. doi: 10.1016/j.gde.2007.04.004. [DOI] [PubMed] [Google Scholar]
  • 128.Ross RJ, Verma V, Rosenberg KI, Chan CC, Tuo J. Genetic markers and biomarkers for age-related macular degeneration. Expert Rev Ophthalmol. 2007;2:443–57. doi: 10.1586/17469899.2.3.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Marx J. Gene offers insight into macular degeneration. Science. 2006;314:405. doi: 10.1126/science.314.5798.405a. [DOI] [PubMed] [Google Scholar]
  • 130.Chan CC, Shen D, Zhou M, Ross RJ, Ding X, Zhang K, Green WR, Tuo J.Human HtrA1 in the archived eyes with age-related macular degeneration. Trans Am Ophthalmol Soc 2007. 105:92–7 [PMC free article] [PubMed] [Google Scholar]
  • 131.Leveziel N, Zerbib J, Richard F, Querques G, Morineau G, Fremeaux-Bacchi V, Coscas G, Soubrane G, Benlian P, Souied EH. Genotype-phenotype correlations for exudative Age-related Macular Degeneration associated with homozygous HTRA1 and CFH genotypes. Invest Ophthalmol Vis Sci. 2008;49:3090–4. doi: 10.1167/iovs.07-1540. [DOI] [PubMed] [Google Scholar]
  • 132.Montes T, Goicoechea de Jorge E, Ramos R, Gomà M, Pujol O, Sánchez-Corral P, Rodríguez de Córdoba S. Genetic deficiency of complement factor H in a patient with age-related macular degeneration and membranoproliferative glomerulonephritis. Mol Immunol. 2008;45:2897–904. doi: 10.1016/j.molimm.2008.01.027. [DOI] [PubMed] [Google Scholar]
  • 133.Pallen MJ, Wren BW. The HtrA family of serine proteases. Mol Microbiol. 1997;26:209–21. doi: 10.1046/j.1365-2958.1997.5601928.x. [DOI] [PubMed] [Google Scholar]
  • 134.Thornton J, Edwards R, Mitchell P, Harrison RA, Buchan I, Kelly SP. Smoking and age-related macular degeneration: a review of association. Eye. 2005;19:935–44. doi: 10.1038/sj.eye.6701978. [DOI] [PubMed] [Google Scholar]
  • 135.Conley YP, Jakobsdottir J, Mah T, Weeks DE, Klein R, Kuller L, Ferrell RE, Gorin MB. CFH, ELOVL4, PLEKHA1 and LOC387715 genes and susceptibility to age-related maculopathy: AREDS and CHS cohorts and meta-analyses. Hum Mol Genet. 2006;15:3206–18. doi: 10.1093/hmg/ddl396. [DOI] [PubMed] [Google Scholar]
  • 136.Odergren A, Ming Y, Kvanta A. Photodynamic therapy of experimental choroidal neovascularization in the mouse. Curr Eye Res. 2006;31:765–74. doi: 10.1080/02713680600865045. [DOI] [PubMed] [Google Scholar]
  • 137.Mathura JR, Jr, Jafari N, Chang JT, Hackett SF, Wahlin KJ, Della NG, Okamoto N, Zack DJ, Campochiaro PA. Bone morphogenetic proteins-2 and −4: negative growth regulators in adult retinal pigmented epithelium. Invest Ophthalmol Vis Sci. 2000;41:592–600. [PubMed] [Google Scholar]
  • 138.Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787–95. doi: 10.1038/nature05292. [DOI] [PubMed] [Google Scholar]
  • 139.Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med. 2000;6:513–9. doi: 10.1038/74994. [DOI] [PubMed] [Google Scholar]
  • 140.Barron MJ, Johnson MA, Andrews RM, Clarke MP, Griffiths PG, Bristow E, He LP, Durham S, Turnbull DM. Mitochondrial abnormalities in ageing macular photoreceptors. Invest Ophthalmol Vis Sci. 2001;42:3016–22. [PubMed] [Google Scholar]
  • 141.Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet. 2005;39:359–407. doi: 10.1146/annurev.genet.39.110304.095751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Feher J, Kovacs I, Artico M, Cavallotti C, Papale A, Balacco Gabrieli C. Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol Aging. 2006;27:983–93. doi: 10.1016/j.neurobiolaging.2005.05.012. [DOI] [PubMed] [Google Scholar]
  • 143.Carelli V, Ross-Cisneros FN, Sadun AA. Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res. 2004;23:53–89. doi: 10.1016/j.preteyeres.2003.10.003. [DOI] [PubMed] [Google Scholar]
  • 144.Beatty S, Koh H, Phil M, Henson D, Boulton M. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol. 2000;45:115–34. doi: 10.1016/s0039-6257(00)00140-5. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Vision are provided here courtesy of Emory University and the Zhongshan Ophthalmic Center, Sun Yat-sen University, P.R. China

RESOURCES