Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Apr;95(4):1660–1668. doi: 10.1172/JCI117841

Characterization of the deoxycytidine kinase promoter in human lymphoblast cell lines.

E H Chen 1, E E Johnson 2nd 1, S M Vetter 1, B S Mitchell 1
PMCID: PMC295671  PMID: 7706474

Abstract

Deoxycytidine kinase (dCK) phosphorylates 2'-deoxycytidine, as well as the purine deoxyribonucleosides and a number of nucleoside analogues that are important in the chemotherapy of leukemias. The enzyme is highly expressed in the thymus relative to other tissues and may play an important role in the T cell depletion associated with adenosine deaminase and purine nucleoside phosphorylase deficiencies. To characterize the dCK promoter region and to determine whether it mediates higher levels of gene expression in T lymphoblasts, we have analyzed a 700-bp genomic fragment encompassing 548 bp of 5' flanking region for functional activity and for transcription factor binding using T and B lymphoblast cell lines and nuclear extracts. The regions of the promoter that were defined as important to its function include a 5' GC box, and E box, a 3' GC box, and an E2F site. The transcription factor Sp1 binds to both GC boxes, activating at the 5' site but repressing at the 3' site. MLTF/USF activates transcription through the E box, whereas E2F activates through the E2F site, but binds weakly to this site in vitro and does not appear to mediate cell cycle-specific expression of dCK in vivo. No significant differences in promoter activity or transcription factor binding were observed between Jurkat T and Raji B lymphoblasts. The promoter of the dCK gene is thus regulated by a number of ubiquitously expressed transcription factors. DCK expression in cultured lymphoblast cell lines is not solely a function of the T or B lineage derivation.

Full text

PDF
1660

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnér E. S., Flygar M., Bohman C., Wallström B., Eriksson S. Deoxycytidine kinase is constitutively expressed in human lymphocytes: consequences for compartmentation effects, unscheduled DNA synthesis, and viral replication in resting cells. Exp Cell Res. 1988 Oct;178(2):335–342. doi: 10.1016/0014-4827(88)90403-x. [DOI] [PubMed] [Google Scholar]
  2. Arnér E. S., Spasokoukotskaja T., Eriksson S. Selective assays for thymidine kinase 1 and 2 and deoxycytidine kinase and their activities in extracts from human cells and tissues. Biochem Biophys Res Commun. 1992 Oct 30;188(2):712–718. doi: 10.1016/0006-291x(92)91114-6. [DOI] [PubMed] [Google Scholar]
  3. Blake M. C., Azizkhan J. C. Transcription factor E2F is required for efficient expression of the hamster dihydrofolate reductase gene in vitro and in vivo. Mol Cell Biol. 1989 Nov;9(11):4994–5002. doi: 10.1128/mcb.9.11.4994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blake M. C., Jambou R. C., Swick A. G., Kahn J. W., Azizkhan J. C. Transcriptional initiation is controlled by upstream GC-box interactions in a TATAA-less promoter. Mol Cell Biol. 1990 Dec;10(12):6632–6641. doi: 10.1128/mcb.10.12.6632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bohman C., Eriksson S. Deoxycytidine kinase from human leukemic spleen: preparation and characteristics of homogeneous enzyme. Biochemistry. 1988 Jun 14;27(12):4258–4265. doi: 10.1021/bi00412a009. [DOI] [PubMed] [Google Scholar]
  6. Brockman R. W., Cheng Y. C., Schabel F. M., Jr, Montgomery J. A. Metabolism and chemotherapeutic activity of 9-beta-D-arabinofuranosyl-2-fluoroadenine against murine leukemia L1210 and evidence for its phosphorylation by deoxycytidine kinase. Cancer Res. 1980 Oct;40(10):3610–3615. [PubMed] [Google Scholar]
  7. Carson D. A., Kaye J., Seegmiller J. E. Differential sensitivity of human leukemic T cell lines and B cell lines to growth inhibition by deoxyadenosine. J Immunol. 1978 Nov;121(5):1726–1731. [PubMed] [Google Scholar]
  8. Carson D. A., Kaye J., Seegmiller J. E. Lymphospecific toxicity in adenosine deaminase deficiency and purine nucleoside phosphorylase deficiency: possible role of nucleoside kinase(s). Proc Natl Acad Sci U S A. 1977 Dec;74(12):5677–5681. doi: 10.1073/pnas.74.12.5677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carson D. A., Kaye J., Wasson D. B. The potential importance of soluble deoxynucleotidase activity in mediating deoxyadenosine toxicity in human lymphoblasts. J Immunol. 1981 Jan;126(1):348–352. [PubMed] [Google Scholar]
  10. Carson D. A., Wasson D. B., Kaye J., Ullman B., Martin D. W., Jr, Robins R. K., Montgomery J. A. Deoxycytidine kinase-mediated toxicity of deoxyadenosine analogs toward malignant human lymphoblasts in vitro and toward murine L1210 leukemia in vivo. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6865–6869. doi: 10.1073/pnas.77.11.6865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Carthew R. W., Chodosh L. A., Sharp P. A. The major late transcription factor binds to and activates the mouse metallothionein I promoter. Genes Dev. 1987 Nov;1(9):973–980. doi: 10.1101/gad.1.9.973. [DOI] [PubMed] [Google Scholar]
  12. Chittenden T., Livingston D. M., DeCaprio J. A. Cell cycle analysis of E2F in primary human T cells reveals novel E2F complexes and biochemically distinct forms of free E2F. Mol Cell Biol. 1993 Jul;13(7):3975–3983. doi: 10.1128/mcb.13.7.3975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chottiner E. G., Shewach D. S., Datta N. S., Ashcraft E., Gribbin D., Ginsburg D., Fox I. H., Mitchell B. S. Cloning and expression of human deoxycytidine kinase cDNA. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1531–1535. doi: 10.1073/pnas.88.4.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cohen A., Lee J. W., Dosch H. M., Gelfand E. W. The expression of deoxyguanosine toxicity in T lymphocytes at different stages of maturation. J Immunol. 1980 Oct;125(4):1578–1582. [PubMed] [Google Scholar]
  15. Crabb D. W., Minth C. D., Dixon J. E. Assaying the reporter gene chloramphenicol acetyltransferase. Methods Enzymol. 1989;168:690–701. doi: 10.1016/0076-6879(89)68050-0. [DOI] [PubMed] [Google Scholar]
  16. Dalton S. Cell cycle regulation of the human cdc2 gene. EMBO J. 1992 May;11(5):1797–1804. doi: 10.1002/j.1460-2075.1992.tb05231.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Datta N. S., Shewach D. S., Hurley M. C., Mitchell B. S., Fox I. H. Human T-lymphoblast deoxycytidine kinase: purification and properties. Biochemistry. 1989 Jan 10;28(1):114–123. doi: 10.1021/bi00427a017. [DOI] [PubMed] [Google Scholar]
  18. Datta N. S., Shewach D. S., Mitchell B. S., Fox I. H. Kinetic properties and inhibition of human T lymphoblast deoxycytidine kinase. J Biol Chem. 1989 Jun 5;264(16):9359–9364. [PubMed] [Google Scholar]
  19. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Eustice D. C., Feldman P. A., Colberg-Poley A. M., Buckery R. M., Neubauer R. H. A sensitive method for the detection of beta-galactosidase in transfected mammalian cells. Biotechniques. 1991 Dec;11(6):739-40, 742-3. [PubMed] [Google Scholar]
  21. Fairbanks L. D., Taddeo A., Duley J. A., Simmonds H. A. Mechanisms of deoxyguanosine lymphotoxicity. Human thymocytes, but not peripheral blood lymphocytes accumulate deoxy-GTP in conditions simulating purine nucleoside phosphorylase deficiency. J Immunol. 1990 Jan 15;144(2):485–491. [PubMed] [Google Scholar]
  22. Farnham P. J., Slansky J. E., Kollmar R. The role of E2F in the mammalian cell cycle. Biochim Biophys Acta. 1993 Aug 23;1155(2):125–131. doi: 10.1016/0304-419x(93)90001-s. [DOI] [PubMed] [Google Scholar]
  23. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  24. Fridovich-Keil J. L., Markell P. J., Gudas J. M., Pardee A. B. DNA sequences required for serum-responsive regulation of expression from the mouse thymidine kinase promoter. Cell Growth Differ. 1993 Aug;4(8):679–687. [PubMed] [Google Scholar]
  25. Gelfand E. W., Lee J. J., Dosch H. M. Selective toxicity of purine deoxynucleosides for human lymphocyte growth and function. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1998–2002. doi: 10.1073/pnas.76.4.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Goday A., Simmonds H. A., Morris G. S., Fairbanks L. D. B cells as well as T cells form deoxynucleotides from either deoxyadenosine or deoxyguanosine. Clin Exp Immunol. 1984 Apr;56(1):39–48. [PMC free article] [PubMed] [Google Scholar]
  27. Gumucio D. L., Rood K. L., Blanchard-McQuate K. L., Gray T. A., Saulino A., Collins F. S. Interaction of Sp1 with the human gamma globin promoter: binding and transactivation of normal and mutant promoters. Blood. 1991 Oct 1;78(7):1853–1863. [PubMed] [Google Scholar]
  28. Hengstschläger M., Denk C., Wawra E. Cell cycle regulation of deoxycytidine kinase. Evidence for post-transcriptional control. FEBS Lett. 1993 Apr 26;321(2-3):237–240. doi: 10.1016/0014-5793(93)80116-c. [DOI] [PubMed] [Google Scholar]
  29. Hiebert S. W., Blake M., Azizkhan J., Nevins J. R. Role of E2F transcription factor in E1A-mediated trans activation of cellular genes. J Virol. 1991 Jul;65(7):3547–3552. doi: 10.1128/jvi.65.7.3547-3552.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Jane S. M., Gumucio D. L., Ney P. A., Cunningham J. M., Nienhuis A. W. Methylation-enhanced binding of Sp1 to the stage selector element of the human gamma-globin gene promoter may regulate development specificity of expression. Mol Cell Biol. 1993 Jun;13(6):3272–3281. doi: 10.1128/mcb.13.6.3272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kawasaki H., Carrera C. J., Piro L. D., Saven A., Kipps T. J., Carson D. A. Relationship of deoxycytidine kinase and cytoplasmic 5'-nucleotidase to the chemotherapeutic efficacy of 2-chlorodeoxyadenosine. Blood. 1993 Feb 1;81(3):597–601. [PubMed] [Google Scholar]
  32. Kim Y. K., Lee A. S. Identification of a protein-binding site in the promoter of the human thymidine kinase gene required for the G1-S-regulated transcription. J Biol Chem. 1992 Feb 5;267(4):2723–2727. [PubMed] [Google Scholar]
  33. Kong X. B., Tong W. P., Chou T. C. Induction of deoxycytidine kinase by 5-azacytidine in an HL-60 cell line resistant to arabinosylcytosine. Mol Pharmacol. 1991 Feb;39(2):250–257. [PubMed] [Google Scholar]
  34. Kufe D. W., Spriggs D. R. Biochemical and cellular pharmacology of cytosine arabinoside. Semin Oncol. 1985 Jun;12(2 Suppl 3):34–48. [PubMed] [Google Scholar]
  35. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  36. Lam E. W., Watson R. J. An E2F-binding site mediates cell-cycle regulated repression of mouse B-myb transcription. EMBO J. 1993 Jul;12(7):2705–2713. doi: 10.1002/j.1460-2075.1993.tb05932.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lattier D. L., States J. C., Hutton J. J., Wiginton D. A. Cell type-specific transcriptional regulation of the human adenosine deaminase gene. Nucleic Acids Res. 1989 Feb 11;17(3):1061–1076. doi: 10.1093/nar/17.3.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Li L. J., Naeve G. S., Lee A. S. Temporal regulation of cyclin A-p107 and p33cdk2 complexes binding to a human thymidine kinase promoter element important for G1-S phase transcriptional regulation. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3554–3558. doi: 10.1073/pnas.90.8.3554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Means A. L., Slansky J. E., McMahon S. L., Knuth M. W., Farnham P. J. The HIP1 binding site is required for growth regulation of the dihydrofolate reductase gene promoter. Mol Cell Biol. 1992 Mar;12(3):1054–1063. doi: 10.1128/mcb.12.3.1054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Mitchell B. S., Mejias E., Daddona P. E., Kelley W. N. Purinogenic immunodeficiency diseases: selective toxicity of deoxyribonucleosides for T cells. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5011–5014. doi: 10.1073/pnas.75.10.5011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Mitchell B. S., Song J. J., Johnson E. E., 2nd, Chen E., Dayton J. S. Regulation of human deoxycytidine kinase expression. Adv Enzyme Regul. 1993;33:61–68. doi: 10.1016/0065-2571(93)90009-3. [DOI] [PubMed] [Google Scholar]
  42. Mudryj M., Hiebert S. W., Nevins J. R. A role for the adenovirus inducible E2F transcription factor in a proliferation dependent signal transduction pathway. EMBO J. 1990 Jul;9(7):2179–2184. doi: 10.1002/j.1460-2075.1990.tb07387.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Nevins J. R. E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science. 1992 Oct 16;258(5081):424–429. doi: 10.1126/science.1411535. [DOI] [PubMed] [Google Scholar]
  44. Osborne W. R. Nucleoside kinases in T and B lymphoblasts distinguished by autoradiography. Proc Natl Acad Sci U S A. 1986 Jun;83(11):4030–4034. doi: 10.1073/pnas.83.11.4030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Owens J. K., Shewach D. S., Ullman B., Mitchell B. S. Resistance to 1-beta-D-arabinofuranosylcytosine in human T-lymphoblasts mediated by mutations within the deoxycytidine kinase gene. Cancer Res. 1992 May 1;52(9):2389–2393. [PubMed] [Google Scholar]
  46. PULVERTAFT J. V. CYTOLOGY OF BURKITT'S TUMOUR (AFRICAN LYMPHOMA). Lancet. 1964 Feb 1;1(7327):238–240. doi: 10.1016/s0140-6736(64)92345-1. [DOI] [PubMed] [Google Scholar]
  47. Plunkett W., Chubb S., Alexander L., Montgomery J. A. Comparison of the toxicity and metabolism of 9-beta-D-arabinofuranosyl-2-fluoroadenine and 9-beta-D-arabinofuranosyladenine in human lymphoblastoid cells. Cancer Res. 1980 Jul;40(7):2349–2355. [PubMed] [Google Scholar]
  48. Riccio A., Pedone P. V., Lund L. R., Olesen T., Olsen H. S., Andreasen P. A. Transforming growth factor beta 1-responsive element: closely associated binding sites for USF and CCAAT-binding transcription factor-nuclear factor I in the type 1 plasminogen activator inhibitor gene. Mol Cell Biol. 1992 Apr;12(4):1846–1855. doi: 10.1128/mcb.12.4.1846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Sarup J. C., Fridland A. Identification of purine deoxyribonucleoside kinases from human leukemia cells: substrate activation by purine and pyrimidine deoxyribonucleosides. Biochemistry. 1987 Jan 27;26(2):590–597. doi: 10.1021/bi00376a034. [DOI] [PubMed] [Google Scholar]
  50. Seed B., Sheen J. Y. A simple phase-extraction assay for chloramphenicol acyltransferase activity. Gene. 1988 Jul 30;67(2):271–277. doi: 10.1016/0378-1119(88)90403-9. [DOI] [PubMed] [Google Scholar]
  51. Slansky J. E., Li Y., Kaelin W. G., Farnham P. J. A protein synthesis-dependent increase in E2F1 mRNA correlates with growth regulation of the dihydrofolate reductase promoter. Mol Cell Biol. 1993 Mar;13(3):1610–1618. doi: 10.1128/mcb.13.3.1610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Song J. J., Walker S., Chen E., Johnson E. E., 2nd, Spychala J., Gribbin T., Mitchell B. S. Genomic structure and chromosomal localization of the human deoxycytidine kinase gene. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):431–434. doi: 10.1073/pnas.90.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Srivastva K. K., Cable E. E., Bonkovsky H. L. Purifying nascent mRNA from nuclear run-on assays using guanidinium isothiocyanate. Biotechniques. 1993 Aug;15(2):226–227. [PubMed] [Google Scholar]
  54. Starnes M. C., Cheng Y. C. Cellular metabolism of 2',3'-dideoxycytidine, a compound active against human immunodeficiency virus in vitro. J Biol Chem. 1987 Jan 25;262(3):988–991. [PubMed] [Google Scholar]
  55. Wade M., Kowalik T. F., Mudryj M., Huang E. S., Azizkhan J. C. E2F mediates dihydrofolate reductase promoter activation and multiprotein complex formation in human cytomegalovirus infection. Mol Cell Biol. 1992 Oct;12(10):4364–4374. doi: 10.1128/mcb.12.10.4364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Watt F., Molloy P. L. Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev. 1988 Sep;2(9):1136–1143. doi: 10.1101/gad.2.9.1136. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES