Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Apr;95(4):1846–1853. doi: 10.1172/JCI117864

Skeletal muscle utilization of free fatty acids in women with visceral obesity.

S R Colberg 1, J A Simoneau 1, F L Thaete 1, D E Kelley 1
PMCID: PMC295723  PMID: 7706491

Abstract

Visceral obesity is strongly associated with insulin resistance. One potential cause is increased availability of FFA. Alternatively, it has been proposed that there is impaired oxidation of lipid in individuals at risk for obesity. The extent to which either concept involves skeletal muscle is uncertain. To examine these opposing hypotheses, 17 healthy lean and obese premenopausal women, among whom cross-sectional area of visceral fat ranged from 18 to 180 cm2, participated in leg balance studies for measurement of FFA and glucose utilization during basal and insulin-stimulated conditions. A metabolic profile of skeletal muscle, based on enzyme activity, was determined in vastus lateralis muscle obtained by percutaneous biopsy. Visceral fat content was negatively correlated with insulin sensitivity (rates of leg glucose uptake and storage), but insulin resistance was not caused by glucose-FFA competition. During hyperinsulinemia, neither leg FFA uptake nor oxidation was increased in women with visceral obesity. During fasting conditions, however, rates of FFA uptake across the leg were negatively correlated with visceral adiposity as were activities of muscle carnitine palmitoyl transferase and citrate synthase. In summary, visceral adiposity is clearly associated with skeletal muscle insulin resistance but this is not due to glucose-FFA substrate competition. Instead, women with visceral obesity have reduced postabsorptive FFA utilization by muscle.

Full text

PDF
1846

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BALTZAN M. A., ANDRES R., CADER G., ZIERLER K. L. Heterogeneity of forearm metabolism with special reference to free fatty acids. J Clin Invest. 1962 Jan;41:116–125. doi: 10.1172/JCI104453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bass A., Brdiczka D., Eyer P., Hofer S., Pette D. Metabolic differentiation of distinct muscle types at the level of enzymatic organization. Eur J Biochem. 1969 Sep;10(2):198–206. doi: 10.1111/j.1432-1033.1969.tb00674.x. [DOI] [PubMed] [Google Scholar]
  3. Björntorp P. Metabolic implications of body fat distribution. Diabetes Care. 1991 Dec;14(12):1132–1143. doi: 10.2337/diacare.14.12.1132. [DOI] [PubMed] [Google Scholar]
  4. Boden G., Jadali F., White J., Liang Y., Mozzoli M., Chen X., Coleman E., Smith C. Effects of fat on insulin-stimulated carbohydrate metabolism in normal men. J Clin Invest. 1991 Sep;88(3):960–966. doi: 10.1172/JCI115399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Campbell P. J., Carlson M. G., Nurjhan N. Fat metabolism in human obesity. Am J Physiol. 1994 Apr;266(4 Pt 1):E600–E605. doi: 10.1152/ajpendo.1994.266.4.E600. [DOI] [PubMed] [Google Scholar]
  6. Carlson M. G., Snead W. L., Hill J. O., Nurjhan N., Campbell P. J. Glucose regulation of lipid metabolism in humans. Am J Physiol. 1991 Dec;261(6 Pt 1):E815–E820. doi: 10.1152/ajpendo.1991.261.6.E815. [DOI] [PubMed] [Google Scholar]
  7. DOLE V. P., MEINERTZ H. Microdetermination of long-chain fatty acids in plasma and tissues. J Biol Chem. 1960 Sep;235:2595–2599. [PubMed] [Google Scholar]
  8. Dagenais G. R., Tancredi R. G., Zierler K. L. Free fatty acid oxidation by forearm muscle at rest, and evidence for an intramuscular lipid pool in the human forearm. J Clin Invest. 1976 Aug;58(2):421–431. doi: 10.1172/JCI108486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DeFronzo R. A., Tobin J. D., Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979 Sep;237(3):E214–E223. doi: 10.1152/ajpendo.1979.237.3.E214. [DOI] [PubMed] [Google Scholar]
  10. Douglas A. R., Jones N. L., Reed J. W. Calculation of whole blood CO2 content. J Appl Physiol (1985) 1988 Jul;65(1):473–477. doi: 10.1152/jappl.1988.65.1.473. [DOI] [PubMed] [Google Scholar]
  11. Evans D. J., Hoffmann R. G., Kalkhoff R. K., Kissebah A. H. Relationship of body fat topography to insulin sensitivity and metabolic profiles in premenopausal women. Metabolism. 1984 Jan;33(1):68–75. doi: 10.1016/0026-0495(84)90164-1. [DOI] [PubMed] [Google Scholar]
  12. Evans W. J., Phinney S. D., Young V. R. Suction applied to a muscle biopsy maximizes sample size. Med Sci Sports Exerc. 1982;14(1):101–102. [PubMed] [Google Scholar]
  13. Felber J. P., Ferrannini E., Golay A., Meyer H. U., Theibaud D., Curchod B., Maeder E., Jequier E., DeFronzo R. A. Role of lipid oxidation in pathogenesis of insulin resistance of obesity and type II diabetes. Diabetes. 1987 Nov;36(11):1341–1350. doi: 10.2337/diab.36.11.1341. [DOI] [PubMed] [Google Scholar]
  14. Ferland M., Després J. P., Tremblay A., Pinault S., Nadeau A., Moorjani S., Lupien P. J., Thériault G., Bouchard C. Assessment of adipose tissue distribution by computed axial tomography in obese women: association with body density and anthropometric measurements. Br J Nutr. 1989 Mar;61(2):139–148. doi: 10.1079/bjn19890104. [DOI] [PubMed] [Google Scholar]
  15. Ferraro R. T., Eckel R. H., Larson D. E., Fontvieille A. M., Rising R., Jensen D. R., Ravussin E. Relationship between skeletal muscle lipoprotein lipase activity and 24-hour macronutrient oxidation. J Clin Invest. 1993 Jul;92(1):441–445. doi: 10.1172/JCI116586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Finegood D. T., Bergman R. N., Vranic M. Modeling error and apparent isotope discrimination confound estimation of endogenous glucose production during euglycemic glucose clamps. Diabetes. 1988 Aug;37(8):1025–1034. doi: 10.2337/diab.37.8.1025. [DOI] [PubMed] [Google Scholar]
  17. Frayn K. N. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol Respir Environ Exerc Physiol. 1983 Aug;55(2):628–634. doi: 10.1152/jappl.1983.55.2.628. [DOI] [PubMed] [Google Scholar]
  18. Gauthier J. M., Thériault R., Thériault G., Gélinas Y., Simoneau J. A. Electrical stimulation-induced changes in skeletal muscle enzymes of men and women. Med Sci Sports Exerc. 1992 Nov;24(11):1252–1256. [PubMed] [Google Scholar]
  19. Gelfand R. A., Barrett E. J. Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. J Clin Invest. 1987 Jul;80(1):1–6. doi: 10.1172/JCI113033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Howald H., Pette D., Simoneau J. A., Uber A., Hoppeler H., Cerretelli P. Effect of chronic hypoxia on muscle enzyme activities. Int J Sports Med. 1990 Feb;11 (Suppl 1):S10–S14. doi: 10.1055/s-2007-1024847. [DOI] [PubMed] [Google Scholar]
  21. Jensen M. D., Haymond M. W., Rizza R. A., Cryer P. E., Miles J. M. Influence of body fat distribution on free fatty acid metabolism in obesity. J Clin Invest. 1989 Apr;83(4):1168–1173. doi: 10.1172/JCI113997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kelley D. E., Mokan M., Simoneau J. A., Mandarino L. J. Interaction between glucose and free fatty acid metabolism in human skeletal muscle. J Clin Invest. 1993 Jul;92(1):91–98. doi: 10.1172/JCI116603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kelley D. E., Reilly J. P., Veneman T., Mandarino L. J. Effects of insulin on skeletal muscle glucose storage, oxidation, and glycolysis in humans. Am J Physiol. 1990 Jun;258(6 Pt 1):E923–E929. doi: 10.1152/ajpendo.1990.258.6.E923. [DOI] [PubMed] [Google Scholar]
  24. Kelley D. E., Simoneau J. A. Impaired free fatty acid utilization by skeletal muscle in non-insulin-dependent diabetes mellitus. J Clin Invest. 1994 Dec;94(6):2349–2356. doi: 10.1172/JCI117600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kelley D. E., Slasky B. S., Janosky J. Skeletal muscle density: effects of obesity and non-insulin-dependent diabetes mellitus. Am J Clin Nutr. 1991 Sep;54(3):509–515. doi: 10.1093/ajcn/54.3.509. [DOI] [PubMed] [Google Scholar]
  26. Kelley D. E., Wing R., Buonocore C., Sturis J., Polonsky K., Fitzsimmons M. Relative effects of calorie restriction and weight loss in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1993 Nov;77(5):1287–1293. doi: 10.1210/jcem.77.5.8077323. [DOI] [PubMed] [Google Scholar]
  27. Kiens B., Lithell H., Mikines K. J., Richter E. A. Effects of insulin and exercise on muscle lipoprotein lipase activity in man and its relation to insulin action. J Clin Invest. 1989 Oct;84(4):1124–1129. doi: 10.1172/JCI114275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kissebah A. H., Vydelingum N., Murray R., Evans D. J., Hartz A. J., Kalkhoff R. K., Adams P. W. Relation of body fat distribution to metabolic complications of obesity. J Clin Endocrinol Metab. 1982 Feb;54(2):254–260. doi: 10.1210/jcem-54-2-254. [DOI] [PubMed] [Google Scholar]
  29. Lillioja S., Bogardus C., Mott D. M., Kennedy A. L., Knowler W. C., Howard B. V. Relationship between insulin-mediated glucose disposal and lipid metabolism in man. J Clin Invest. 1985 Apr;75(4):1106–1115. doi: 10.1172/JCI111804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mandarino L. J., Consoli A., Jain A., Kelley D. E. Differential regulation of intracellular glucose metabolism by glucose and insulin in human muscle. Am J Physiol. 1993 Dec;265(6 Pt 1):E898–E905. doi: 10.1152/ajpendo.1993.265.6.E898. [DOI] [PubMed] [Google Scholar]
  31. Martin M. L., Jensen M. D. Effects of body fat distribution on regional lipolysis in obesity. J Clin Invest. 1991 Aug;88(2):609–613. doi: 10.1172/JCI115345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Peiris A. N., Sothmann M. S., Hoffmann R. G., Hennes M. I., Wilson C. R., Gustafson A. B., Kissebah A. H. Adiposity, fat distribution, and cardiovascular risk. Ann Intern Med. 1989 Jun 1;110(11):867–872. doi: 10.7326/0003-4819-110-11-867. [DOI] [PubMed] [Google Scholar]
  33. Randle P. J., Kerbey A. L., Espinal J. Mechanisms decreasing glucose oxidation in diabetes and starvation: role of lipid fuels and hormones. Diabetes Metab Rev. 1988 Nov;4(7):623–638. doi: 10.1002/dmr.5610040702. [DOI] [PubMed] [Google Scholar]
  34. Richelsen B., Pedersen S. B., Møller-Pedersen T., Schmitz O., Møller N., Børglum J. D. Lipoprotein lipase activity in muscle tissue influenced by fatness, fat distribution and insulin in obese females. Eur J Clin Invest. 1993 Apr;23(4):226–233. doi: 10.1111/j.1365-2362.1993.tb00766.x. [DOI] [PubMed] [Google Scholar]
  35. Robin A. P., Nordenström J., Askanazi J., Carpentier Y. A., Elwyn D. H., Kinney J. M. Influence of parenteral carbohydrate on fat oxidation in surgical patients. Surgery. 1984 May;95(5):608–618. [PubMed] [Google Scholar]
  36. Rossetti L., Hu M. Skeletal muscle glycogenolysis is more sensitive to insulin than is glucose transport/phosphorylation. Relation to the insulin-mediated inhibition of hepatic glucose production. J Clin Invest. 1993 Dec;92(6):2963–2974. doi: 10.1172/JCI116919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shumate J. B., Carroll J. E., Brooke M. H., Choksi R. M. Palmitate oxidation in human muscle: comparison to CPT and carnitine. Muscle Nerve. 1982 Mar;5(3):226–231. doi: 10.1002/mus.880050309. [DOI] [PubMed] [Google Scholar]
  38. Simoneau J. A., Colberg S. R., Thaete F. L., Kelley D. E. Skeletal muscle glycolytic and oxidative enzyme capacities are determinants of insulin sensitivity and muscle composition in obese women. FASEB J. 1995 Feb;9(2):273–278. [PubMed] [Google Scholar]
  39. Storlien L. H., Jenkins A. B., Chisholm D. J., Pascoe W. S., Khouri S., Kraegen E. W. Influence of dietary fat composition on development of insulin resistance in rats. Relationship to muscle triglyceride and omega-3 fatty acids in muscle phospholipid. Diabetes. 1991 Feb;40(2):280–289. doi: 10.2337/diab.40.2.280. [DOI] [PubMed] [Google Scholar]
  40. Tremblay A. Human obesity: a defect in lipid oxidation or in thermogenesis? Int J Obes Relat Metab Disord. 1992 Dec;16(12):953–957. [PubMed] [Google Scholar]
  41. Turcotte L. P., Richter E. A., Kiens B. Increased plasma FFA uptake and oxidation during prolonged exercise in trained vs. untrained humans. Am J Physiol. 1992 Jun;262(6 Pt 1):E791–E799. doi: 10.1152/ajpendo.1992.262.6.E791. [DOI] [PubMed] [Google Scholar]
  42. Williamson D. F. Descriptive epidemiology of body weight and weight change in U.S. adults. Ann Intern Med. 1993 Oct 1;119(7 Pt 2):646–649. doi: 10.7326/0003-4819-119-7_part_2-199310011-00004. [DOI] [PubMed] [Google Scholar]
  43. Zammit V. A., Newsholme E. A. Activities of enzymes of fat and ketone-body metabolism and effects of starvation on blood concentrations of glucose and fat fuels in teleost and elasmobranch fish. Biochem J. 1979 Nov 15;184(2):313–322. doi: 10.1042/bj1840313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Zurlo F., Lillioja S., Esposito-Del Puente A., Nyomba B. L., Raz I., Saad M. F., Swinburn B. A., Knowler W. C., Bogardus C., Ravussin E. Low ratio of fat to carbohydrate oxidation as predictor of weight gain: study of 24-h RQ. Am J Physiol. 1990 Nov;259(5 Pt 1):E650–E657. doi: 10.1152/ajpendo.1990.259.5.E650. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES