Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Apr;95(4):1877–1883. doi: 10.1172/JCI117868

Molecular basis of subtotal complement C6 deficiency. A carboxy-terminally truncated but functionally active C6.

R Würzner 1, M J Hobart 1, B A Fernie 1, D Mewar 1, P C Potter 1, A Orren 1, P J Lachmann 1
PMCID: PMC295731  PMID: 7535801

Abstract

Individuals with subtotal complement C6 deficiency possess a C6 molecule that is 14% shorter than normal C6 and present in low but detectable concentrations (1-2% of the normal mean). We now show that this dysmorphic C6 is bactericidally active and lacks an epitope that was mapped to the most carboxy-terminal part of C6 using C6 cDNA fragments expressed as fusion proteins in the pUEX expression system. We thus predicted that the abnormal C6 molecule might be carboxy-terminally truncated and sought a mutation in an area approximately 14% from the carboxy-terminal end of the coding sequence. By sequencing PCR-amplified products from this region, we found, in three individuals from two families, a mutation that might plausibly be responsible for the defect. All three have an abnormal 5' splice donor site of intron 15, which would probably prevent splicing. An in-frame stop codon is found 17 codons downstream from the intron boundary, which would lead to a truncated polypeptide 13.5% smaller than normal C6. This result was unexpected, as earlier studies mapped the C5b binding site, or a putative enzymatic region, to this part of C6. Interestingly, all three subjects were probably heterozygous for both subtotal C6 and complete C6 deficiency.

Full text

PDF
1877

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bankier A. T., Weston K. M., Barrell B. G. Random cloning and sequencing by the M13/dideoxynucleotide chain termination method. Methods Enzymol. 1987;155:51–93. doi: 10.1016/0076-6879(87)55009-1. [DOI] [PubMed] [Google Scholar]
  2. Boyer J. T., Gall E. P., Norman M. E., Nilsson U. R., Zimmerman T. S. Hereditary deficiency of the seventh component of complement. J Clin Invest. 1975 Oct;56(4):905–913. doi: 10.1172/JCI108170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bressan G. M., Stanley K. K. pUEX, a bacterial expression vector related to pEX with universal host specificity. Nucleic Acids Res. 1987 Dec 10;15(23):10056–10056. doi: 10.1093/nar/15.23.10056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DiScipio R. G. Formation and structure of the C5b-7 complex of the lytic pathway of complement. J Biol Chem. 1992 Aug 25;267(24):17087–17094. [PubMed] [Google Scholar]
  5. DiScipio R. G., Hugli T. E. The molecular architecture of human complement component C6. J Biol Chem. 1989 Sep 25;264(27):16197–16206. [PubMed] [Google Scholar]
  6. Esser A. F., Sodetz J. M. Membrane attack complex proteins C5b-6, C7, C8, and C9 of human complement. Methods Enzymol. 1988;162:551–578. doi: 10.1016/0076-6879(88)62103-3. [DOI] [PubMed] [Google Scholar]
  7. Fernie B. A., Hobart M. J., Delbridge G., Potter P. C., Orren A., Lachmann P. J. C6 haplotypes: associations of a Dde I site polymorphism to complement deficiency genes and the Msp I restriction fragment length polymorphism (RFLP) Clin Exp Immunol. 1994 Feb;95(2):351–356. doi: 10.1111/j.1365-2249.1994.tb06536.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Green M. R. Biochemical mechanisms of constitutive and regulated pre-mRNA splicing. Annu Rev Cell Biol. 1991;7:559–599. doi: 10.1146/annurev.cb.07.110191.003015. [DOI] [PubMed] [Google Scholar]
  9. Guesdon J. L., Ternynck T., Avrameas S. The use of avidin-biotin interaction in immunoenzymatic techniques. J Histochem Cytochem. 1979 Aug;27(8):1131–1139. doi: 10.1177/27.8.90074. [DOI] [PubMed] [Google Scholar]
  10. Haefliger J. A., Tschopp J., Vial N., Jenne D. E. Complete primary structure and functional characterization of the sixth component of the human complement system. Identification of the C5b-binding domain in complement C6. J Biol Chem. 1989 Oct 25;264(30):18041–18051. [PubMed] [Google Scholar]
  11. Hobart M. J., Fernie B., DiScipio R. G. Structure of the human C6 gene. Biochemistry. 1993 Jun 22;32(24):6198–6205. doi: 10.1021/bi00075a012. [DOI] [PubMed] [Google Scholar]
  12. Hobart M. J., Joysey V., Lachmann P. J. Inherited structural variation and linkage relationships of C7. J Immunogenet. 1978 Jun;5(3):157–163. doi: 10.1111/j.1744-313x.1978.tb00641.x. [DOI] [PubMed] [Google Scholar]
  13. Hugo F., Berstecher C., Krämer S., Fassbender W., Bhakdi S. In vivo clearance studies of the terminal fluid-phase complement complex in rabbits. Clin Exp Immunol. 1989 Jul;77(1):112–116. [PMC free article] [PubMed] [Google Scholar]
  14. Jeffreys A. J. DNA sequence variants in the G gamma-, A gamma-, delta- and beta-globin genes of man. Cell. 1979 Sep;18(1):1–10. doi: 10.1016/0092-8674(79)90348-9. [DOI] [PubMed] [Google Scholar]
  15. Kaufmann T., Hänsch G., Rittner C., Späth P., Tedesco F., Schneider P. M. Genetic basis of human complement C8 beta deficiency. J Immunol. 1993 Jun 1;150(11):4943–4947. [PubMed] [Google Scholar]
  16. Klickstein L. B., Bartow T. J., Miletic V., Rabson L. D., Smith J. A., Fearon D. T. Identification of distinct C3b and C4b recognition sites in the human C3b/C4b receptor (CR1, CD35) by deletion mutagenesis. J Exp Med. 1988 Nov 1;168(5):1699–1717. doi: 10.1084/jem.168.5.1699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lachmann P. J., Hobart M. J., Woo P. Combined genetic deficiency of C6 and C7 in man. Clin Exp Immunol. 1978 Aug;33(2):193–203. [PMC free article] [PubMed] [Google Scholar]
  18. MacKay S. L., Dankert J. R. Bacterial killing and inhibition of inner membrane activity by C5b-9 complexes as a function of the sequential addition of C9 to C5b-8 sites. J Immunol. 1990 Nov 15;145(10):3367–3371. [PubMed] [Google Scholar]
  19. Meissner P. S., Sisk W. P., Berman M. L. Bacteriophage lambda cloning system for the construction of directional cDNA libraries. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4171–4175. doi: 10.1073/pnas.84.12.4171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Morgan B. P. Complement membrane attack on nucleated cells: resistance, recovery and non-lethal effects. Biochem J. 1989 Nov 15;264(1):1–14. doi: 10.1042/bj2640001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Morgan B. P., Vora J. P., Bennett A. J., Thomas J. P., Matthews N. A case of hereditary combined deficiency of complement components C6 and C7 in man. Clin Exp Immunol. 1989 Mar;75(3):396–401. [PMC free article] [PubMed] [Google Scholar]
  22. Müller-Eberhard H. J. The membrane attack complex of complement. Annu Rev Immunol. 1986;4:503–528. doi: 10.1146/annurev.iy.04.040186.002443. [DOI] [PubMed] [Google Scholar]
  23. Nakano Y., Hashimoto M., Choi N. H., Sugita Y., Tobe T., Mazda T., Tomita M. Functional and structural domains of the sixth component (C6) of human complement. Chem Pharm Bull (Tokyo) 1991 Feb;39(2):432–436. doi: 10.1248/cpb.39.432. [DOI] [PubMed] [Google Scholar]
  24. Orren A., Würzner R., Potter P. C., Fernie B. A., Coetzee S., Morgan B. P., Lachmann P. J. Properties of a low molecular weight complement component C6 found in human subjects with subtotal C6 deficiency. Immunology. 1992 Jan;75(1):10–16. [PMC free article] [PubMed] [Google Scholar]
  25. Petersen B. H., Lee T. J., Snyderman R., Brooks G. F. Neisseria meningitidis and Neisseria gonorrhoeae bacteremia associated with C6, C7, or C8 deficiency. Ann Intern Med. 1979 Jun;90(6):917–920. doi: 10.7326/0003-4819-90-6-917. [DOI] [PubMed] [Google Scholar]
  26. Potter P. C., Warburton C., Würzner R., Orren A., Di Scipio R. Association of a 12.5-kilobase allele of the MspI restriction fragment length polymorphism of the C6 gene in patients with total deficiency of the sixth component of complement. Exp Clin Immunogenet. 1993;10(1):38–44. [PubMed] [Google Scholar]
  27. Ross S. C., Densen P. Complement deficiency states and infection: epidemiology, pathogenesis and consequences of neisserial and other infections in an immune deficiency. Medicine (Baltimore) 1984 Sep;63(5):243–273. [PubMed] [Google Scholar]
  28. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  29. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stanley K. K., Herz J. Topological mapping of complement component C9 by recombinant DNA techniques suggests a novel mechanism for its insertion into target membranes. EMBO J. 1987 Jul;6(7):1951–1957. doi: 10.1002/j.1460-2075.1987.tb02457.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stanley K. K., Luzio J. P. Construction of a new family of high efficiency bacterial expression vectors: identification of cDNA clones coding for human liver proteins. EMBO J. 1984 Jun;3(6):1429–1434. doi: 10.1002/j.1460-2075.1984.tb01988.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tokunaga K., Dewald G., Omoto K., Juji T. Family study on the polymorphisms of the sixth and seventh components (C6 and C7) of human complement: linkage and haplotype analyses. Am J Hum Genet. 1986 Sep;39(3):414–419. [PMC free article] [PubMed] [Google Scholar]
  33. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Würzner R., Joysey V. C., Lachmann P. J. Complement component C7. Assessment of in vivo synthesis after liver transplantation reveals that hepatocytes do not synthesize the majority of human C7. J Immunol. 1994 May 1;152(9):4624–4629. [PubMed] [Google Scholar]
  35. Würzner R., Nitze R., Götze O. C7*9, a new frequent C7 allele detected by an allotype-specific monoclonal antibody. Complement Inflamm. 1990;7(4-6):290–297. doi: 10.1159/000463163. [DOI] [PubMed] [Google Scholar]
  36. Würzner R., Orren A., Lachmann P. J. Inherited deficiencies of the terminal components of human complement. Immunodefic Rev. 1992;3(2):123–147. [PubMed] [Google Scholar]
  37. Würzner R., Orren A., Potter P., Morgan B. P., Ponard D., Späth P., Brai M., Schulze M., Happe L., Götze O. Functionally active complement proteins C6 and C7 detected in C6- and C7-deficient individuals. Clin Exp Immunol. 1991 Mar;83(3):430–437. doi: 10.1111/j.1365-2249.1991.tb05656.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Würzner R., Rance N., Potter P. C., Hendricks M. L., Lachmann P. J., Orren A. C7 M/N protein polymorphism typing applied to inherited deficiencies of human complement proteins C6 and C7. Clin Exp Immunol. 1992 Sep;89(3):485–489. doi: 10.1111/j.1365-2249.1992.tb06985.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES