Abstract
The concept of using thyroid-stimulating hormone (TSH) receptor antagonists in the management of Graves' disease is intriguing. Therefore, we investigated a TSH receptor antagonist derived from human chorionic gonadotropin (hCG) with respect to TSH receptor binding, adenylate cyclase activity, thyroid hormone release, and HLA class II antigen expression in vitro and in an in vivo model. A variant of hCG, asialoagalacto-hCG, like asialo-hCG and unlike hCG itself, inhibited both 125I-bTSH binding and cAMP response to bTSH in human thyroid membranes. However, like intact or deglycosylated hCG and unlike asialo-hCG, asialoagalacto-hCG displayed a limited affinity for hepatic asialoglycoprotein receptors, a likely marker for its in vivo turnover rate. It proved capable of inhibiting bTSH-stimulated thyroid hormone release in human thyroid slices as well as in the nude mouse bearing human thyroid transplants. It also prevented bTSH induced hypertrophy of transplanted thyrocytes. Further, HLA-DR expression induced by bTSH in the presence of gamma-interferon on human thyrocytes was inhibited. In conclusion, we present evidence that asialogalacto-hCG antagonizes bTSH actions on thyroid function and HLA-DR expression in human thyroid in vitro and, more importantly, in an in vivo model. Hence, the hCG variant described here or similar agents should warrant further exploration in the study and treatment of Graves' disease.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amir S. M., Endo K., Osathanondh R., Ingbar S. H. Divergent responses by human and mouse thyroids to human chorionic gonadotropin in vitro. Mol Cell Endocrinol. 1985 Jan;39(1):31–37. doi: 10.1016/0303-7207(85)90089-9. [DOI] [PubMed] [Google Scholar]
- Amir S. M., Kubota K., Tramontano D., Ingbar S. H., Keutmann H. T. The carbohydrate moiety of bovine thyrotropin is essential for full bioactivity but not for receptor recognition. Endocrinology. 1987 Jan;120(1):345–352. doi: 10.1210/endo-120-1-345. [DOI] [PubMed] [Google Scholar]
- Amir S. M., Sullivan R., Ingbar S. H. The effect of desialylation on the in vitro interaction of human chorionic gonadotropin with human thyroid plasma membranes. Endocrinology. 1981 Oct;109(4):1203–1211. doi: 10.1210/endo-109-4-1203. [DOI] [PubMed] [Google Scholar]
- Amr S., Shimohigashi Y., Carayon P., Chen H. C., Nisula B. Role of the carbohydrate moiety of human choriogonadotropin in its thyrotropic activity. Arch Biochem Biophys. 1984 Feb 15;229(1):170–176. doi: 10.1016/0003-9861(84)90141-3. [DOI] [PubMed] [Google Scholar]
- Ashwell G., Harford J. Carbohydrate-specific receptors of the liver. Annu Rev Biochem. 1982;51:531–554. doi: 10.1146/annurev.bi.51.070182.002531. [DOI] [PubMed] [Google Scholar]
- Atkinson S., Kendall-Taylor P. The stimulation of thyroid hormone secretion in vitro by thyroid-stimulating antibodies. J Clin Endocrinol Metab. 1981 Dec;53(6):1263–1266. doi: 10.1210/jcem-53-6-1263. [DOI] [PubMed] [Google Scholar]
- Bahl O. P. Human chorionic gonadotropin. II. Nature of the carbohydrate units. J Biol Chem. 1969 Feb 25;244(4):575–583. [PubMed] [Google Scholar]
- Bodolay E., Szegedi G., Suranyi P., Juhasz F., Stenszky V., Balazs C., Farid N. R. Expression of HLA-DR antigens by thyroid cells: the effect of Graves' IgG. Immunol Lett. 1987 May;15(1):77–81. doi: 10.1016/0165-2478(87)90080-0. [DOI] [PubMed] [Google Scholar]
- Bottazzo G. F., Pujol-Borrell R., Hanafusa T., Feldmann M. Role of aberrant HLA-DR expression and antigen presentation in induction of endocrine autoimmunity. Lancet. 1983 Nov 12;2(8359):1115–1119. doi: 10.1016/s0140-6736(83)90629-3. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brand E. C., Odink J. The effect of galactose oxidase treatment on the hepatic binding and biological activity of desialylated human chorionic gonadotrophin. Acta Endocrinol (Copenh) 1980 Feb;93(2):234–242. doi: 10.1530/acta.0.0930234. [DOI] [PubMed] [Google Scholar]
- Carayon P., Amr S., Nisula B. A competitive antagonist of thyrotropin: asialo-choriogonadotropin. Biochem Biophys Res Commun. 1980 Nov 17;97(1):69–74. doi: 10.1016/s0006-291x(80)80135-5. [DOI] [PubMed] [Google Scholar]
- Carayon P., Lefort G., Nisula B. Interaction of human chorionic gonadotropin and human luteinizing hormone with human thyroid membranes. Endocrinology. 1980 Jun;106(6):1907–1916. doi: 10.1210/endo-106-6-1907. [DOI] [PubMed] [Google Scholar]
- Davies T. F., Piccinini L. A. Intrathyroidal MHC class II antigen expression and thyroid autoimmunity. Endocrinol Metab Clin North Am. 1987 Jun;16(2):247–268. [PubMed] [Google Scholar]
- Davies T. F., Platzer M. hCG-induced TSH receptor activation and growth acceleration in FRTL-5 thyroid cells. Endocrinology. 1986 May;118(5):2149–2151. doi: 10.1210/endo-118-5-2149. [DOI] [PubMed] [Google Scholar]
- Goldfine I. D., Amir S. M., Petersen A. W., Ingbar S. H. Preparation of biologically active 125I-TSH. Endocrinology. 1974 Nov;95(5):1228–1233. doi: 10.1210/endo-95-5-1228. [DOI] [PubMed] [Google Scholar]
- Hoermann R., Amir S. M., Ingbar S. H. Evidence that partially desialylated variants of human chorionic gonadotropin (hCG) are the factors in crude hCG that inhibit the response to thyrotropin in human thyroid membranes. Endocrinology. 1988 Sep;123(3):1535–1543. doi: 10.1210/endo-123-3-1535. [DOI] [PubMed] [Google Scholar]
- Hoermann R., Amir S. M., Nomura T., Ingbar S. H. Design of a long-lived thyrotropin antagonist from derivatives of human chorionic gonadotropin. Endocrinology. 1989 Jan;124(1):223–232. doi: 10.1210/endo-124-1-223. [DOI] [PubMed] [Google Scholar]
- Hoermann R., Keutmann H. T., Amir S. M. Carbohydrate modifications transform human chorionic gonadotropin into a potent stimulator of adenosine 3',5'-monophosphate and growth responses in FRTL-5 thyroid cells. Endocrinology. 1991 Feb;128(2):1129–1135. doi: 10.1210/endo-128-2-1129. [DOI] [PubMed] [Google Scholar]
- Hoermann R., Rehbach K., Mann K. Asialoagalacto-choriongonadotropin, an antagonist of the action of Graves' immunoglobulins in human thyroid membranes with a limited affinity for hepatic receptors. Horm Metab Res. 1990 Mar;22(3):196–197. doi: 10.1055/s-2007-1004883. [DOI] [PubMed] [Google Scholar]
- Hoermann R., Spoettl G., Moncayo R., Mann K. Evidence for the presence of human chorionic gonadotropin (hCG) and free beta-subunit of hCG in the human pituitary. J Clin Endocrinol Metab. 1990 Jul;71(1):179–186. doi: 10.1210/jcem-71-1-179. [DOI] [PubMed] [Google Scholar]
- Joshi L. R., Weintraub B. D. Naturally occurring forms of thyrotropin with low bioactivity and altered carbohydrate content act as competitive antagonists to more bioactive forms. Endocrinology. 1983 Dec;113(6):2145–2154. doi: 10.1210/endo-113-6-2145. [DOI] [PubMed] [Google Scholar]
- Kalyan N. K., Lippes H. A., Bahl O. P. Role of carbohydrate in human chorionic gonadotropin. Effect of periodate oxidation and reduction on its in vitro and in vivo biological properties. J Biol Chem. 1982 Nov 10;257(21):12624–12631. [PubMed] [Google Scholar]
- Kenimer J. G., Hershman J. M., Higgins H. P. The thyrotropin in hydatidiform moles is human chorionic gonadotropin. J Clin Endocrinol Metab. 1975 Mar;40(3):482–491. doi: 10.1210/jcem-40-3-482. [DOI] [PubMed] [Google Scholar]
- Keutmann H. T., McIlroy P. J., Bergert E. R., Ryan R. J. Chemically deglycosylated human chorionic gonadotropin subunits: characterization and biological properties. Biochemistry. 1983 Jun 21;22(13):3067–3072. doi: 10.1021/bi00282a007. [DOI] [PubMed] [Google Scholar]
- Kyhse-Andersen J. Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods. 1984 Dec;10(3-4):203–209. doi: 10.1016/0165-022x(84)90040-x. [DOI] [PubMed] [Google Scholar]
- Madnick H. M., Kalyan N. K., Segal H. L., Bahl O. P. Effect of modification of galactose residues on the biological properties of asialo human choriogonadotropin. Arch Biochem Biophys. 1981 Dec;212(2):432–442. doi: 10.1016/0003-9861(81)90385-4. [DOI] [PubMed] [Google Scholar]
- Mann K., Schneider N., Hoermann R. Thyrotropic activity of acidic isoelectric variants of human chorionic gonadotropin from trophoblastic tumors. Endocrinology. 1986 Apr;118(4):1558–1566. doi: 10.1210/endo-118-4-1558. [DOI] [PubMed] [Google Scholar]
- Mann K., Siddle K. Evidence for free beta-subunit secretion in so-called human chorionic gonadotropin-positive seminoma. Cancer. 1988 Dec 1;62(11):2378–2382. doi: 10.1002/1097-0142(19881201)62:11<2378::aid-cncr2820621121>3.0.co;2-g. [DOI] [PubMed] [Google Scholar]
- Morell A. G., Gregoriadis G., Scheinberg I. H., Hickman J., Ashwell G. The role of sialic acid in determining the survival of glycoproteins in the circulation. J Biol Chem. 1971 Mar 10;246(5):1461–1467. [PubMed] [Google Scholar]
- Morris J. C., 3rd, Jiang N. S., Charlesworth M. C., McCormick D. J., Ryan R. J. The effects of synthetic alpha-subunit peptides on thyrotropin interaction with its receptor. Endocrinology. 1988 Jul;123(1):456–462. doi: 10.1210/endo-123-1-456. [DOI] [PubMed] [Google Scholar]
- Morris J. C., 3rd, Jiang N. S., Hay I. D., Charlesworth M. C., McCormick D. J., Ryan R. J. The effects of synthetic alpha-subunit peptides on thyroid-stimulating immunoglobulin activity. J Clin Endocrinol Metab. 1988 Oct;67(4):707–712. doi: 10.1210/jcem-67-4-707. [DOI] [PubMed] [Google Scholar]
- Nisula B. C., Ketelslegers J. M. Thyroid-stimulating activity and chorionic gonadotropin. J Clin Invest. 1974 Aug;54(2):494–499. doi: 10.1172/JCI107785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orgiazzi J., Williams D. E., Chopra I. J., Solomon D. H. Human thyroid adenyl cyclase-stimulating activity in immunoglobulin G of patients with Graves' disease. J Clin Endocrinol Metab. 1976 Feb;42(2):341–354. doi: 10.1210/jcem-42-2-341. [DOI] [PubMed] [Google Scholar]
- Powell-Jones C. H., Thomas C. G., Jr, Nayfeh S. N. Thyrotropin receptors in normal human thyroid. Nonclassical binding kinetics not explained by the negative cooperativity model. J Biol Chem. 1980 May 10;255(9):4001–4010. [PubMed] [Google Scholar]
- Rees Smith B., McLachlan S. M., Furmaniak J. Autoantibodies to the thyrotropin receptor. Endocr Rev. 1988 Feb;9(1):106–121. doi: 10.1210/edrv-9-1-106. [DOI] [PubMed] [Google Scholar]
- Rosa C., Amr S., Birken S., Wehmann R., Nisula B. Effect of desialylation of human chorionic gonadotropin on its metabolic clearance rate in humans. J Clin Endocrinol Metab. 1984 Dec;59(6):1215–1219. doi: 10.1210/jcem-59-6-1215. [DOI] [PubMed] [Google Scholar]
- Schumm-Draeger P. M., Usadel K. H., Böhm B. O., Maul F. D., Wenisch H. J., Senekowitsch R., Pickardt C. R., Schöffling K. Thyrotoxic effect of high iodine doses on xenotransplanted autoimmune thyroid tissue in athymic nude mice. Acta Endocrinol Suppl (Copenh) 1987;281:118–121. doi: 10.1530/acta.0.114s118. [DOI] [PubMed] [Google Scholar]
- Siddle K., Gard T., Thomas D., Cranage M. P., Coombs R. R. Red cell-labelled monoclonal antibodies for assay of human chorionic gonadotropin and luteinising hormone by reverse passive haemagglutination. J Immunol Methods. 1984 Oct 12;73(1):169–176. doi: 10.1016/0022-1759(84)90042-5. [DOI] [PubMed] [Google Scholar]
- Tsuruhara T., Dufau M. L., Hickman J., Catt K. J. Biological properties of hCG after removal of terminal sialic acid and galactose residues. Endocrinology. 1972 Jul;91(1):296–301. doi: 10.1210/endo-91-1-296. [DOI] [PubMed] [Google Scholar]
- Uchimura H., Nagataki S., Ito K., Amir S. M., Ingbar S. H. Inhibition of the thyroid adenylate cyclase response to thyroid-stimulating immunoglobulin G by crude and asialo-human chorionic gonadotropin. J Clin Endocrinol Metab. 1982 Aug;55(2):347–353. doi: 10.1210/jcem-55-2-347. [DOI] [PubMed] [Google Scholar]
- Usadel K. H., Teuber J., Paschke R., Junker M., Schwedes U. Transplantation of human endocrine tissues to nude mice: a suitable in vivo model for the study of pathomechanisms involved in autoimmune thyroid diseases. Acta Endocrinol Suppl (Copenh) 1987;281:77–81. [PubMed] [Google Scholar]
- Van Hall E. V., Vaitukaitis J. L., Ross G. T., Hickman J. W., Ashwell G. Effects of progressive desialylation on the rate of disappearance of immunoreactive HCG from plasma in rats. Endocrinology. 1971 Jul;89(1):11–15. doi: 10.1210/endo-89-1-11. [DOI] [PubMed] [Google Scholar]
- Van Hall E. V., Vaitukaitis J. L., Ross G. T., Hickman J. W., Ashwell G. Immunological and biological activity of HCG following progressive desialylation. Endocrinology. 1971 Feb;88(2):456–464. doi: 10.1210/endo-88-2-456. [DOI] [PubMed] [Google Scholar]
- Van Hall E. V., Vaitukaitis J. L., Ross G. T., Hickman J. W., Ashwell G. Immunological and biological activity of HCG following progressive desialylation. Endocrinology. 1971 Feb;88(2):456–464. doi: 10.1210/endo-88-2-456. [DOI] [PubMed] [Google Scholar]
- Volpé R., Karlsson A., Jansson R., Dahlberg P. A. Thyrostatic drugs act through modulation of thyroid cell activity to induce remissions in Graves' disease. Acta Endocrinol Suppl (Copenh) 1987;281:305–311. doi: 10.1530/acta.0.114s305. [DOI] [PubMed] [Google Scholar]
- WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
- Wehmann R. E., Nisula B. C. Metabolic and renal clearance rates of purified human chorionic gonadotropin. J Clin Invest. 1981 Jul;68(1):184–194. doi: 10.1172/JCI110234. [DOI] [PMC free article] [PubMed] [Google Scholar]

