Abstract
A defect in urine concentrating ability occurs in individuals with sickle cell trait (HbAS). This may result from intracellular polymerization of sickle hemoglobin (HbS) in erythrocytes, leading to microvascular occlusion, in the vasa recta of the renal medulla. To test the hypothesis that the severity of the concentrating defect is related to the percentage of sickle hemoglobin present in erythrocytes, urinary concentrating ability was examined after overnight water deprivation, and intranasal desmopressin acetate (dDAVP) in 27 individuals with HbAS. The HbAS individuals were separated into those who had a normal alpha-globin genotype (alpha alpha/alpha alpha), and those who were either heterozygous (-alpha/alpha alpha) or homozygous (-alpha/-alpha) for gene-deletion alpha-thalassemia, because alpha-thalassemia modulates the HbS concentration in HbAS. The urinary concentrating ability was less in the alpha alpha/alpha alpha genotype than in the -alpha/alpha alpha or -alpha/-alpha genotypes (P less than 0.05). After dDAVP, the urine osmolality was greater in patients with the -alpha/-alpha genotype than with the -alpha/alpha alpha genotype (882 +/- 37 vs. 672 +/- 38 mOsm/kg H2O) (P less than 0.05); patients with the -alpha/alpha alpha genotype had greater concentrating ability than individuals with a normal alpha-globin gene arrangement. There was an inverse linear correlation between urinary osmolality after dDAVP and the percentage HbS in all patients studied (r = -0.654; P less than 0.05). A linear correlation also existed for urine concentrating ability and the calculated polymerization tendencies for an oxygen saturation of 0.4 and O (r = -0.62 and 0.69, respectively). We conclude that the severity of hyposthenuria in HbAS is heterogeneous. It is determined by the amount of HbS polymer, that in turn is dependent upon the percentage HbS, which is itself related to the alpha-globin genotype.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blin N., Stafford D. W. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res. 1976 Sep;3(9):2303–2308. doi: 10.1093/nar/3.9.2303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bookchin R. M., Balazs T., Landau L. C. Determinants of red cell sickling. Effects of varying pH and of increasing intracellular hemoglobin concentration by osmotic shrinkage. J Lab Clin Med. 1976 Apr;87(4):597–616. [PubMed] [Google Scholar]
- Bowden D. K., Hill A. V., Higgs D. R., Oppenheimer S. J., Weatherall D. J., Clegg J. B. Different hematologic phenotypes are associated with the leftward (-alpha 4.2) and rightward (-alpha 3.7) alpha+-thalassemia deletions. J Clin Invest. 1987 Jan;79(1):39–43. doi: 10.1172/JCI112804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brezis M., Rosen S., Silva P., Epstein F. H. Renal ischemia: a new perspective. Kidney Int. 1984 Oct;26(4):375–383. doi: 10.1038/ki.1984.185. [DOI] [PubMed] [Google Scholar]
- Brugnara C., Bunn H. F., Tosteson D. C. Regulation of erythrocyte cation and water content in sickle cell anemia. Science. 1986 Apr 18;232(4748):388–390. doi: 10.1126/science.3961486. [DOI] [PubMed] [Google Scholar]
- Bunn H. F., McDonald M. J. Electrostatic interactions in the assembly of haemoglobin. Nature. 1983 Dec 1;306(5942):498–500. doi: 10.1038/306498a0. [DOI] [PubMed] [Google Scholar]
- Bunn H. F., Noguchi C. T., Hofrichter J., Schechter G. P., Schechter A. N., Eaton W. A. Molecular and cellular pathogenesis of hemoglobin SC disease. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7527–7531. doi: 10.1073/pnas.79.23.7527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bunn H. F. Subunit assembly of hemoglobin: an important determinant of hematologic phenotype. Blood. 1987 Jan;69(1):1–6. [PubMed] [Google Scholar]
- DeFronzo R. A., Taufield P. A., Black H., McPhedran P., Cooke C. R. Impaired renal tubular potassium secretion in sickle cell disease. Ann Intern Med. 1979 Mar;90(3):310–316. doi: 10.7326/0003-4819-90-3-310. [DOI] [PubMed] [Google Scholar]
- Dozy A. M., Kan Y. W., Embury S. H., Mentzer W. C., Wang W. C., Lubin B., Davis J. R., Jr, Koenig H. M. alpha-Globin gene organisation in blacks precludes the severe form of alpha-thalassaemia. Nature. 1979 Aug 16;280(5723):605–607. doi: 10.1038/280605a0. [DOI] [PubMed] [Google Scholar]
- Eaton W. A., Hofrichter J. Hemoglobin S gelation and sickle cell disease. Blood. 1987 Nov;70(5):1245–1266. [PubMed] [Google Scholar]
- Embury S. H., Clark M. R., Monroy G., Mohandas N. Concurrent sickle cell anemia and alpha-thalassemia. Effect on pathological properties of sickle erythrocytes. J Clin Invest. 1984 Jan;73(1):116–123. doi: 10.1172/JCI111181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Embury S. H., Miller J. A., Dozy A. M., Kan Y. W., Chan V., Todd D. Two different molecular organizations account for the single alpha-globin gene of the alpha-thalassemia-2 genotype. J Clin Invest. 1980 Dec;66(6):1319–1325. doi: 10.1172/JCI109984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fabry M. E., Mears J. G., Patel P., Schaefer-Rego K., Carmichael L. D., Martinez G., Nagel R. L. Dense cells in sickle cell anemia: the effects of gene interaction. Blood. 1984 Nov;64(5):1042–1046. [PubMed] [Google Scholar]
- Fodde R., Losekoot M., van den Broek M. H., Oldenburg M., Rashida N., Schreuder A., Wijnen J. T., Giordano P. C., Nayudu N. V., Khan P. M. Prevalence and molecular heterogeneity of alfa+ thalassemia in two tribal populations from Andhra Pradesh, India. Hum Genet. 1988 Oct;80(2):157–160. doi: 10.1007/BF00702860. [DOI] [PubMed] [Google Scholar]
- Green M. A., Noguchi C. T., Keidan A. J., Marwah S. S., Stuart J. Polymerization of sickle cell hemoglobin at arterial oxygen saturation impairs erythrocyte deformability. J Clin Invest. 1988 Jun;81(6):1669–1674. doi: 10.1172/JCI113504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harkness D. R. Sickle cell trait revisited. Am J Med. 1989 Sep;87(3N):30N–34N. [PubMed] [Google Scholar]
- Hebbel R. P. Beyond hemoglobin polymerization: the red blood cell membrane and sickle disease pathophysiology. Blood. 1991 Jan 15;77(2):214–237. [PubMed] [Google Scholar]
- Heller P., Best W. R., Nelson R. B., Becktel J. Clinical implications of sickle-cell trait and glucose-6-phosphate dehydrogenase deficiency in hospitalized black male patients. N Engl J Med. 1979 May 3;300(18):1001–1005. doi: 10.1056/NEJM197905033001801. [DOI] [PubMed] [Google Scholar]
- Higgs D. R., Pressley L., Old J. M., Hunt D. M., Clegg J. B., Weatherall D. J., Serjeant G. R. Negro alpha-thalassaemia is caused by deletion of a single alpha-globin gene. Lancet. 1979 Aug 11;2(8137):272–276. doi: 10.1016/s0140-6736(79)90290-3. [DOI] [PubMed] [Google Scholar]
- Huisman T. H. Trimodality in the percentages of beta chain variants in heterozygotes: the effect of the number of active Hbalpha structural loci. Hemoglobin. 1977;1(4):349–382. doi: 10.3109/03630267708996895. [DOI] [PubMed] [Google Scholar]
- Jamison R. L., Maffly R. H. The urinary concentrating mechanism. N Engl J Med. 1976 Nov 4;295(19):1059–1067. doi: 10.1056/NEJM197611042951908. [DOI] [PubMed] [Google Scholar]
- Keidan A. J., Sowter M. C., Johnson C. S., Noguchi C. T., Girling A. J., Stevens S. M., Stuart J. Effect of polymerization tendency on haematological, rheological and clinical parameters in sickle cell anaemia. Br J Haematol. 1989 Apr;71(4):551–557. doi: 10.1111/j.1365-2141.1989.tb06316.x. [DOI] [PubMed] [Google Scholar]
- Kennedy A. P., Walsh D. A., Nicholson R., Adams J. G., 3rd, Steinberg M. H. Influence of HbS levels upon the hematological and clinical characteristics of sickle cell trait. Am J Hematol. 1986 May;22(1):51–54. doi: 10.1002/ajh.2830220108. [DOI] [PubMed] [Google Scholar]
- Kong H. H., Alleyne G. A. Studies on acid excretion in adults with sickle-cell anaemia. Clin Sci. 1971 Dec;41(6):505–518. doi: 10.1042/cs0410505. [DOI] [PubMed] [Google Scholar]
- Liebhaber S. A., Coleman M. B., Adams J. G., 3rd, Cash F. E., Steinberg M. H. Molecular basis for nondeletion alpha-thalassemia in American blacks. Alpha 2(116GAG----UAG). J Clin Invest. 1987 Jul;80(1):154–159. doi: 10.1172/JCI113041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nance W. E., Grove J. Genetic determination of phenotypic variation in sickle cell trait. Science. 1972 Aug 25;177(4050):716–718. doi: 10.1126/science.177.4050.716. [DOI] [PubMed] [Google Scholar]
- Noguchi C. T. Polymerization in erythrocytes containing S and non-S hemoglobins. Biophys J. 1984 Jun;45(6):1153–1158. doi: 10.1016/S0006-3495(84)84263-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noguchi C. T., Schechter A. N. The intracellular polymerization of sickle hemoglobin and its relevance to sickle cell disease. Blood. 1981 Dec;58(6):1057–1068. [PubMed] [Google Scholar]
- Noguchi C. T., Torchia D. A., Schechter A. N. Determination of deoxyhemoglobin S polymer in sickle erythrocytes upon deoxygenation. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5487–5491. doi: 10.1073/pnas.77.9.5487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noguchi C. T., Torchia D. A., Schechter A. N. Intracellular polymerization of sickle hemoglobin. Effects of cell heterogeneity. J Clin Invest. 1983 Sep;72(3):846–852. doi: 10.1172/JCI111055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noguchi C. T., Torchia D. A., Schechter A. N. Polymerization of hemoglobin in sickle trait erythrocytes and lysates. J Biol Chem. 1981 May 10;256(9):4168–4171. [PubMed] [Google Scholar]
- Oster J. R., Lee S. M., Lespier L. E., Pellegrini E. L., Vaamonde C. A. Renal acidification in sickle cell trait. Arch Intern Med. 1976 Jan;136(1):30–35. [PubMed] [Google Scholar]
- PERILLIE P. E., EPSTEIN F. H. Sickling phenomenon produced by hypertonic solutions: a possible explanation for the hyposthenuria of sicklemia. J Clin Invest. 1963 Apr;42:570–580. doi: 10.1172/JCI104746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
- Statius van Eps L. W., Pinedo-Veels C., de Vries G. H., de Koning J. Nature of concentrating defect in sickle-cell nephropathy. Microradioangiographic studies. Lancet. 1970 Feb 28;1(7644):450–452. doi: 10.1016/s0140-6736(70)90836-6. [DOI] [PubMed] [Google Scholar]
- Steinberg M. H., Adams J. G., 3rd, Dreiling B. J. Alpha thalassaemia in adults with sickle-cell trait. Br J Haematol. 1975 May;30(1):31–37. doi: 10.1111/j.1365-2141.1975.tb00514.x. [DOI] [PubMed] [Google Scholar]
- Steinberg M. H., Coleman M. B., Adams J. G., 3rd, Hartmann R. C., Saba H., Anagnou N. P. A new gene deletion in the alpha-like globin gene cluster as the molecular basis for the rare alpha-thalassemia-1(--/alpha alpha) in blacks: HbH disease in sickle cell trait. Blood. 1986 Feb;67(2):469–473. [PubMed] [Google Scholar]
- Steinberg M. H., Embury S. H. Alpha-thalassemia in blacks: genetic and clinical aspects and interactions with the sickle hemoglobin gene. Blood. 1986 Nov;68(5):985–990. [PubMed] [Google Scholar]
- Wallenstein S., Zucker C. L., Fleiss J. L. Some statistical methods useful in circulation research. Circ Res. 1980 Jul;47(1):1–9. doi: 10.1161/01.res.47.1.1. [DOI] [PubMed] [Google Scholar]
- Weatherall D. J., Clegg J. B., Blankson J., McNeil J. R. A new sickling disorder resulting from interaction of the genes for haemoglobin S and alpha-thalassaemia. Br J Haematol. 1969 Dec;17(6):517–526. doi: 10.1111/j.1365-2141.1969.tb01402.x. [DOI] [PubMed] [Google Scholar]
- Wilson J. B., Headlee M. E., Huisman T. H. A new high-performance liquid chromatographic procedure for the separation and quantitation of various hemoglobin variants in adults and newborn babies. J Lab Clin Med. 1983 Aug;102(2):174–186. [PubMed] [Google Scholar]