Abstract
Angiotensin II (Ang II) is an important regulator of proximal tubule salt and water reabsorption. Recent studies indicate that rabbit proximal tubule angiotensin II receptors are the type-1 (AT1R) subtype. We studied the effect of Ang II on proximal tubule receptor expression. Rabbits were treated with either angiotensin converting enzyme inhibitors or a low salt diet to modulate endogenous Ang II levels. In captopril-treated rabbits, liver and glomerular AT1R mRNA levels increased 242 +/- 125 and 141 +/- 60%, respectively (n = 6-7; P < 0.05), as determined by quantitative PCR. In contrast, proximal tubule AT1R mRNA levels decreased 40 +/- 11% (n = 6; P < 0.05). Binding of 125I Ang II to renal cortical basolateral membranes of captopril-treated rabbits decreased from 2.9 +/- 0.55 to 1.4 +/- 0.17 fmol/mg protein (n = 6; P < 0.025). In rabbits fed a sodium chloride-deficient diet for 4 wk, AT1R mRNA levels decreased 52 +/- 11% in liver and 43 +/- 7% in glomeruli (n = 4-5; P < 0.05), whereas they increased 141 +/- 85% (n = 5; P < 0.05) in proximal tubule. In basolateral membranes from rabbits on the sodium chloride-deficient diet, specific binding of 125I Ang II increased from 2.1 +/- 0.2 to 4.3 +/- 1.1 fmol/mg protein (n = 7; P < 0.05). To determine whether Ang II directly regulates expression of proximal tubule AT1 receptors, further studies were performed in cultured proximal tubule cells grown from microdissected S1 segments of rabbit proximal tubules and immortalized by transfection with a replication-defective SV40 vector. Incubation of these cells with Ang II (10(-11) to 10(-7) M) led to concentration-dependent increases in both AT1R mRNA levels and specific 125I Ang II binding. Pretreatment with pertussis toxin inhibited Ang II stimulation of AT1R mRNA. AT1R mRNA expression was decreased by either forskolin or a nonhydrolyzable cAMP analogue (dibutryl cAMP). Simultaneous Ang II administration overcame the inhibitory effect of forskolin but not dibutryl cAMP. These results indicate that proximal tubule AT1R expression is regulated by ambient Ang II levels, and Ang II increases AT1R mRNA at least in part by decreasing proximal tubule cAMP generation through a pertussis toxin-sensitive mechanism. Upregulation of proximal tubule AT1R by Ang II may be important in mediating enhanced proximal tubule sodium reabsorption in states of elevated systemic or intrarenal Ang II.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Braam B., Mitchell K. D., Fox J., Navar L. G. Proximal tubular secretion of angiotensin II in rats. Am J Physiol. 1993 May;264(5 Pt 2):F891–F898. doi: 10.1152/ajprenal.1993.264.5.F891. [DOI] [PubMed] [Google Scholar]
- Briggs J. P., Todd-Turla K., Schnermann J. B., Killen P. D. Approach to the molecular basis of nephron heterogeneity: application of reverse transcription-polymerase chain reaction to dissected tubule segments. Semin Nephrol. 1993 Jan;13(1):2–12. [PubMed] [Google Scholar]
- Brown G. P., Douglas J. G. Angiotensin II binding sites on isolated rat renal brush border membranes. Endocrinology. 1982 Dec;111(6):1830–1836. doi: 10.1210/endo-111-6-1830. [DOI] [PubMed] [Google Scholar]
- Brown G. P., Douglas J. G. Angiotensin II-binding sites in rat and primate isolated renal tubular basolateral membranes. Endocrinology. 1983 Jun;112(6):2007–2014. doi: 10.1210/endo-112-6-2007. [DOI] [PubMed] [Google Scholar]
- Burns K. D., Homma T., Harris R. C. The intrarenal renin-angiotensin system. Semin Nephrol. 1993 Jan;13(1):13–30. [PubMed] [Google Scholar]
- Burns K. D., Inagami T., Harris R. C. Cloning of a rabbit kidney cortex AT1 angiotensin II receptor that is present in proximal tubule epithelium. Am J Physiol. 1993 Apr;264(4 Pt 2):F645–F654. doi: 10.1152/ajprenal.1993.264.4.F645. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Cogan M. G. Angiotensin II: a powerful controller of sodium transport in the early proximal tubule. Hypertension. 1990 May;15(5):451–458. doi: 10.1161/01.hyp.15.5.451. [DOI] [PubMed] [Google Scholar]
- Douglas J. G., Romero M., Hopfer U. Signaling mechanisms coupled to the angiotensin receptor of proximal tubular epithelium. Kidney Int Suppl. 1990 Nov;30:S43–S47. [PubMed] [Google Scholar]
- Fox J., Guan S., Hymel A. A., Navar L. G. Dietary Na and ACE inhibition effects on renal tissue angiotensin I and II and ACE activity in rats. Am J Physiol. 1992 May;262(5 Pt 2):F902–F909. doi: 10.1152/ajprenal.1992.262.5.F902. [DOI] [PubMed] [Google Scholar]
- Gröne H. J., Simon M., Fuchs E. Autoradiographic characterization of angiotensin receptor subtypes in fetal and adult human kidney. Am J Physiol. 1992 Feb;262(2 Pt 2):F326–F331. doi: 10.1152/ajprenal.1992.262.2.F326. [DOI] [PubMed] [Google Scholar]
- Gunther S., Gimbrone M. A., Jr, Alexander R. W. Regulation by angiotensin II of its receptors in resistance blood vessels. Nature. 1980 Sep 18;287(5779):230–232. doi: 10.1038/287230a0. [DOI] [PubMed] [Google Scholar]
- Harris R. C., Daniel T. O. Epidermal growth factor binding, stimulation of phosphorylation, and inhibition of gluconeogenesis in rat proximal tubule. J Cell Physiol. 1989 May;139(2):383–391. doi: 10.1002/jcp.1041390222. [DOI] [PubMed] [Google Scholar]
- Hauger R. L., Aguilera G., Catt K. J. Angiotensin II regulates its receptor sites in the adrenal glomerulosa zone. Nature. 1978 Jan 12;271(5641):176–178. doi: 10.1038/271176a0. [DOI] [PubMed] [Google Scholar]
- Herblin W. F., Chiu A. T., McCall D. E., Ardecky R. J., Carini D. J., Duncia J. V., Pease L. J., Wong P. C., Wexler R. R., Johnson A. L. Angiotensin II receptor heterogeneity. Am J Hypertens. 1991 Apr;4(4 Pt 2):299S–302S. doi: 10.1093/ajh/4.4.299s. [DOI] [PubMed] [Google Scholar]
- Ingelfinger J. R., Zuo W. M., Fon E. A., Ellison K. E., Dzau V. J. In situ hybridization evidence for angiotensinogen messenger RNA in the rat proximal tubule. An hypothesis for the intrarenal renin angiotensin system. J Clin Invest. 1990 Feb;85(2):417–423. doi: 10.1172/JCI114454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iwai N., Inagami T. Identification of two subtypes in the rat type I angiotensin II receptor. FEBS Lett. 1992 Feb 24;298(2-3):257–260. doi: 10.1016/0014-5793(92)80071-n. [DOI] [PubMed] [Google Scholar]
- Iwai N., Inagami T., Ohmichi N., Nakamura Y., Saeki Y., Kinoshita M. Differential regulation of rat AT1a and AT1b receptor mRNA. Biochem Biophys Res Commun. 1992 Oct 15;188(1):298–303. doi: 10.1016/0006-291x(92)92384-a. [DOI] [PubMed] [Google Scholar]
- Iwai N., Yamano Y., Chaki S., Konishi F., Bardhan S., Tibbetts C., Sasaki K., Hasegawa M., Matsuda Y., Inagami T. Rat angiotensin II receptor: cDNA sequence and regulation of the gene expression. Biochem Biophys Res Commun. 1991 May 31;177(1):299–304. doi: 10.1016/0006-291x(91)91982-i. [DOI] [PubMed] [Google Scholar]
- Kao C., Wu S. Q., Bhatthacharya M., Meisner L. F., Reznikoff C. A. Losses of 3p, 11p, and 13q in EJ/ras-transformable simian virus 40-immortalized human uroepithelial cells. Genes Chromosomes Cancer. 1992 Mar;4(2):158–168. doi: 10.1002/gcc.2870040210. [DOI] [PubMed] [Google Scholar]
- Kitami Y., Okura T., Marumoto K., Wakamiya R., Hiwada K. Differential gene expression and regulation of type-1 angiotensin II receptor subtypes in the rat. Biochem Biophys Res Commun. 1992 Oct 15;188(1):446–452. doi: 10.1016/0006-291x(92)92405-m. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lewis N. P., Ferguson D. R. [3H]angiotensin II binding to basolateral membranes from rat proximal renal tubule: effect of sodium intake and captopril. J Endocrinol. 1989 Aug;122(2):499–507. doi: 10.1677/joe.0.1220499. [DOI] [PubMed] [Google Scholar]
- Liu F. Y., Cogan M. G. Angiotensin II stimulates early proximal bicarbonate absorption in the rat by decreasing cyclic adenosine monophosphate. J Clin Invest. 1989 Jul;84(1):83–91. doi: 10.1172/JCI114174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu F. Y., Cogan M. G. Angiotensin II stimulation of hydrogen ion secretion in the rat early proximal tubule. Modes of action, mechanism, and kinetics. J Clin Invest. 1988 Aug;82(2):601–607. doi: 10.1172/JCI113638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Makita N., Iwai N., Inagami T., Badr K. F. Two distinct pathways in the down-regulation of type-1 angiotension II receptor gene in rat glomerular mesangial cells. Biochem Biophys Res Commun. 1992 May 29;185(1):142–146. doi: 10.1016/s0006-291x(05)80967-2. [DOI] [PubMed] [Google Scholar]
- Mujais S. K., Kauffman S., Katz A. I. Angiotensin II binding sites in individual segments of the rat nephron. J Clin Invest. 1986 Jan;77(1):315–318. doi: 10.1172/JCI112293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sacktor B., Rosenbloom I. L., Liang C. T., Cheng L. Sodium gradient- and sodium plus potassium gradient-dependent L-glutamate uptake in renal basolateral membrane vesicles. J Membr Biol. 1981 May 15;60(1):63–71. doi: 10.1007/BF01870833. [DOI] [PubMed] [Google Scholar]
- Schelling J. R., Singh H., Marzec R., Linas S. L. Angiotensin II-dependent proximal tubule sodium transport is mediated by cAMP modulation of phospholipase C. Am J Physiol. 1994 Nov;267(5 Pt 1):C1239–C1245. doi: 10.1152/ajpcell.1994.267.5.C1239. [DOI] [PubMed] [Google Scholar]
- Schuster V. L., Kokko J. P., Jacobson H. R. Angiotensin II directly stimulates sodium transport in rabbit proximal convoluted tubules. J Clin Invest. 1984 Feb;73(2):507–515. doi: 10.1172/JCI111237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sechi L. A., Grady E. F., Griffin C. A., Kalinyak J. E., Schambelan M. Distribution of angiotensin II receptor subtypes in rat and human kidney. Am J Physiol. 1992 Feb;262(2 Pt 2):F236–F240. doi: 10.1152/ajprenal.1992.262.2.F236. [DOI] [PubMed] [Google Scholar]
- Seikaly M. G., Arant B. S., Jr, Seney F. D., Jr Endogenous angiotensin concentrations in specific intrarenal fluid compartments of the rat. J Clin Invest. 1990 Oct;86(4):1352–1357. doi: 10.1172/JCI114846. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skorecki K. L., Ballermann B. J., Rennke H. G., Brenner B. M. Angiotensin II receptor regulation in isolated renal glomeruli. Fed Proc. 1983 Nov;42(14):3064–3070. [PubMed] [Google Scholar]
- Vinay P., Gougoux A., Lemieux G. Isolation of a pure suspension of rat proximal tubules. Am J Physiol. 1981 Oct;241(4):F403–F411. doi: 10.1152/ajprenal.1981.241.4.F403. [DOI] [PubMed] [Google Scholar]
- Xie M. H., Liu F. Y., Wong P. C., Timmermans P. B., Cogan M. G. Proximal nephron and renal effects of DuP 753, a nonpeptide angiotensin II receptor antagonist. Kidney Int. 1990 Sep;38(3):473–479. doi: 10.1038/ki.1990.228. [DOI] [PubMed] [Google Scholar]
- Yamada H., Sexton P. M., Chai S. Y., Adam W. R., Mendelsohn F. A. Angiotensin II receptors in the kidney. Localization and physiological significance. Am J Hypertens. 1990 Mar;3(3):250–255. doi: 10.1093/ajh/3.3.250. [DOI] [PubMed] [Google Scholar]
- Yoshida H., Kakuchi J., Guo D. F., Furuta H., Iwai N., van der Meer-de Jong R., Inagami T., Ichikawa I. Analysis of the evolution of angiotensin II type 1 receptor gene in mammals (mouse, rat, bovine and human). Biochem Biophys Res Commun. 1992 Jul 31;186(2):1042–1049. doi: 10.1016/0006-291x(92)90852-c. [DOI] [PubMed] [Google Scholar]