Abstract
An inducible nitric oxide synthase has recently been described in proximal tubule epithelium. To investigate the effects of proximal tubule NO on Na+/K(+)-ATPase, we induced NO production in mouse proximal tubule epithelial cells by treatment with lipopolysaccharide (LPS) and interferon-gamma (IFN gamma) followed by determinations of ouabain-sensitive ATPase activity. Na+/K(+)-ATPase activity decreased after 4 h of LPS/IFN gamma treatment, reaching maximal inhibition after 24 h (34% reduction in activity). The inhibition of Na+/K(+)-ATPase activity by LPS/IFN gamma was prevented by simultaneous incubation with N omega-nitro L-arginine and markedly blunted by removal of L-arginine from the medium. The NO donors sodium nitroprusside and SIN-1 also inhibited Na+/K(+)-ATPase activity to a similar extent than LPS/IFN gamma. However, treatment with 8-pCPT-cGMP only modestly reduced Na+/K(+)-ATPase activity. Interestingly, superoxide dismutase prevented the inhibitory effects of NO on Na+/K(+)-ATPase activity, suggesting a role for peroxynitrite in this inhibition. We conclude that NO generated by mouse proximal tubule epithelial cell iNOS inhibits Na/K ATPase activity in an autocrine fashion and that this inhibition is accompanied by a reduction in Na-dependent solute transport.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alberola A., Pinilla J. M., Quesada T., Romero J. C., Salom M. G., Salazar F. J. Role of nitric oxide in mediating renal response to volume expansion. Hypertension. 1992 Jun;19(6 Pt 2):780–784. doi: 10.1161/01.hyp.19.6.780. [DOI] [PubMed] [Google Scholar]
- Bachmann S., Mundel P. Nitric oxide in the kidney: synthesis, localization, and function. Am J Kidney Dis. 1994 Jul;24(1):112–129. doi: 10.1016/s0272-6386(12)80170-3. [DOI] [PubMed] [Google Scholar]
- Beckman J. S., Crow J. P. Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochem Soc Trans. 1993 May;21(2):330–334. doi: 10.1042/bst0210330. [DOI] [PubMed] [Google Scholar]
- Bredt D. S., Snyder S. H. Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc Natl Acad Sci U S A. 1989 Nov;86(22):9030–9033. doi: 10.1073/pnas.86.22.9030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davda R. K., Chandler L. J., Crews F. T., Guzman N. J. Ethanol enhances the endothelial nitric oxide synthase response to agonists. Hypertension. 1993 Jun;21(6 Pt 2):939–943. doi: 10.1161/01.hyp.21.6.939. [DOI] [PubMed] [Google Scholar]
- De Nicola L., Blantz R. C., Gabbai F. B. Nitric oxide and angiotensin II. Glomerular and tubular interaction in the rat. J Clin Invest. 1992 Apr;89(4):1248–1256. doi: 10.1172/JCI115709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ding A. H., Nathan C. F., Stuehr D. J. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol. 1988 Oct 1;141(7):2407–2412. [PubMed] [Google Scholar]
- Garg L. C., Knepper M. A., Burg M. B. Mineralocorticoid effects on Na-K-ATPase in individual nephron segments. Am J Physiol. 1981 Jun;240(6):F536–F544. doi: 10.1152/ajprenal.1981.240.6.F536. [DOI] [PubMed] [Google Scholar]
- Garg L. C., Saha P. K., Mohuczy-Dominiak D. Cholinergic inhibition of Na-K-ATPase via activation of protein kinase C in Madin-Darby canine kidney cells. J Am Soc Nephrol. 1993 Aug;4(2):195–205. doi: 10.1681/ASN.V42195. [DOI] [PubMed] [Google Scholar]
- Garvin J. L. Inhibition of Jv by ANF in rat proximal straight tubules requires angiotensin. Am J Physiol. 1989 Nov;257(5 Pt 2):F907–F911. doi: 10.1152/ajprenal.1989.257.5.F907. [DOI] [PubMed] [Google Scholar]
- Guzman N. J., Crews F. T. Regulation of inositol transport by glucose and protein kinase C in mesangial cells. Kidney Int. 1992 Jul;42(1):33–40. doi: 10.1038/ki.1992.257. [DOI] [PubMed] [Google Scholar]
- Haneda M., Kikkawa R., Arimura T., Ebata K., Togawa M., Maeda S., Sawada T., Horide N., Shigeta Y. Glucose inhibits myo-inositol uptake and reduces myo-inositol content in cultured rat glomerular mesangial cells. Metabolism. 1990 Jan;39(1):40–45. doi: 10.1016/0026-0495(90)90145-3. [DOI] [PubMed] [Google Scholar]
- Haverty T. P., Kelly C. J., Hines W. H., Amenta P. S., Watanabe M., Harper R. A., Kefalides N. A., Neilson E. G. Characterization of a renal tubular epithelial cell line which secretes the autologous target antigen of autoimmune experimental interstitial nephritis. J Cell Biol. 1988 Oct;107(4):1359–1368. doi: 10.1083/jcb.107.4.1359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holub B. J. Metabolism and function of myo-inositol and inositol phospholipids. Annu Rev Nutr. 1986;6:563–597. doi: 10.1146/annurev.nu.06.070186.003023. [DOI] [PubMed] [Google Scholar]
- Knowles R. G., Moncada S. Nitric oxide synthases in mammals. Biochem J. 1994 Mar 1;298(Pt 2):249–258. doi: 10.1042/bj2980249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lahera V., Salom M. G., Miranda-Guardiola F., Moncada S., Romero J. C. Effects of NG-nitro-L-arginine methyl ester on renal function and blood pressure. Am J Physiol. 1991 Dec;261(6 Pt 2):F1033–F1037. doi: 10.1152/ajprenal.1991.261.6.F1033. [DOI] [PubMed] [Google Scholar]
- Langrehr J. M., White D. A., Hoffman R. A., Simmons R. L. Macrophages produce nitric oxide at allograft sites. Ann Surg. 1993 Aug;218(2):159–166. doi: 10.1097/00000658-199308000-00007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levillain O., Hus-Citharel A., Morel F., Bankir L. Arginine synthesis in mouse and rabbit nephron: localization and functional significance. Am J Physiol. 1993 Jun;264(6 Pt 2):F1038–F1045. doi: 10.1152/ajprenal.1993.264.6.F1038. [DOI] [PubMed] [Google Scholar]
- Lipton S. A., Choi Y. B., Pan Z. H., Lei S. Z., Chen H. S., Sucher N. J., Loscalzo J., Singel D. J., Stamler J. S. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature. 1993 Aug 12;364(6438):626–632. doi: 10.1038/364626a0. [DOI] [PubMed] [Google Scholar]
- Luckie D. B., Lemas V., Boyd K. L., Fambrough D. M., Takeyasu K. Molecular dissection of functional domains of the E1E2-ATPase using sodium and calcium pump chimeric molecules. Biophys J. 1992 Apr;62(1):220–227. doi: 10.1016/S0006-3495(92)81807-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Majid D. S., Navar L. G. Suppression of blood flow autoregulation plateau during nitric oxide blockade in canine kidney. Am J Physiol. 1992 Jan;262(1 Pt 2):F40–F46. doi: 10.1152/ajprenal.1992.262.1.F40. [DOI] [PubMed] [Google Scholar]
- Majid D. S., Williams A., Navar L. G. Inhibition of nitric oxide synthesis attenuates pressure-induced natriuretic responses in anesthetized dogs. Am J Physiol. 1993 Jan;264(1 Pt 2):F79–F87. doi: 10.1152/ajprenal.1993.264.1.F79. [DOI] [PubMed] [Google Scholar]
- Markewitz B. A., Michael J. R., Kohan D. E. Cytokine-induced expression of a nitric oxide synthase in rat renal tubule cells. J Clin Invest. 1993 May;91(5):2138–2143. doi: 10.1172/JCI116439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
- Morrissey J. J., McCracken R., Kaneto H., Vehaskari M., Montani D., Klahr S. Location of an inducible nitric oxide synthase mRNA in the normal kidney. Kidney Int. 1994 Apr;45(4):998–1005. doi: 10.1038/ki.1994.135. [DOI] [PubMed] [Google Scholar]
- Nakanishi T., Turner R. J., Burg M. B. Osmoregulatory changes in myo-inositol transport by renal cells. Proc Natl Acad Sci U S A. 1989 Aug;86(15):6002–6006. doi: 10.1073/pnas.86.15.6002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noack E., Feelisch M. Molecular mechanisms of nitrovasodilator bioactivation. Basic Res Cardiol. 1991;86 (Suppl 2):37–50. doi: 10.1007/978-3-642-72461-9_5. [DOI] [PubMed] [Google Scholar]
- Nussler A. K., Billiar T. R. Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukoc Biol. 1993 Aug;54(2):171–178. [PubMed] [Google Scholar]
- Schmidt H. H., Lohmann S. M., Walter U. The nitric oxide and cGMP signal transduction system: regulation and mechanism of action. Biochim Biophys Acta. 1993 Aug 18;1178(2):153–175. doi: 10.1016/0167-4889(93)90006-b. [DOI] [PubMed] [Google Scholar]
- Stoos B. A., Carretero O. A., Farhy R. D., Scicli G., Garvin J. L. Endothelium-derived relaxing factor inhibits transport and increases cGMP content in cultured mouse cortical collecting duct cells. J Clin Invest. 1992 Mar;89(3):761–765. doi: 10.1172/JCI115653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoos B. A., Carretero O. A., Garvin J. L. Endothelial-derived nitric oxide inhibits sodium transport by affecting apical membrane channels in cultured collecting duct cells. J Am Soc Nephrol. 1994 May;4(11):1855–1860. doi: 10.1681/ASN.V4111855. [DOI] [PubMed] [Google Scholar]
- Stuehr D. J., Griffith O. W. Mammalian nitric oxide synthases. Adv Enzymol Relat Areas Mol Biol. 1992;65:287–346. doi: 10.1002/9780470123119.ch8. [DOI] [PubMed] [Google Scholar]
- Takeguchi C. A., Honegger U. E., Holland W. W., Titus E. O. Evidence for subclasses of SH groups in (Na++K+)-ATPase. Life Sci. 1976 Sep 15;19(6):797–805. doi: 10.1016/0024-3205(76)90306-4. [DOI] [PubMed] [Google Scholar]
- Terada Y., Tomita K., Nonoguchi H., Marumo F. Polymerase chain reaction localization of constitutive nitric oxide synthase and soluble guanylate cyclase messenger RNAs in microdissected rat nephron segments. J Clin Invest. 1992 Aug;90(2):659–665. doi: 10.1172/JCI115908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tojo A., Gross S. S., Zhang L., Tisher C. C., Schmidt H. H., Wilcox C. S., Madsen K. M. Immunocytochemical localization of distinct isoforms of nitric oxide synthase in the juxtaglomerular apparatus of normal rat kidney. J Am Soc Nephrol. 1994 Jan;4(7):1438–1447. doi: 10.1681/ASN.V471438. [DOI] [PubMed] [Google Scholar]
- Weinberg J. B., Granger D. L., Pisetsky D. S., Seldin M. F., Misukonis M. A., Mason S. N., Pippen A. M., Ruiz P., Wood E. R., Gilkeson G. S. The role of nitric oxide in the pathogenesis of spontaneous murine autoimmune disease: increased nitric oxide production and nitric oxide synthase expression in MRL-lpr/lpr mice, and reduction of spontaneous glomerulonephritis and arthritis by orally administered NG-monomethyl-L-arginine. J Exp Med. 1994 Feb 1;179(2):651–660. doi: 10.1084/jem.179.2.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilcox C. S., Welch W. J., Murad F., Gross S. S., Taylor G., Levi R., Schmidt H. H. Nitric oxide synthase in macula densa regulates glomerular capillary pressure. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11993–11997. doi: 10.1073/pnas.89.24.11993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanase M., Handler J. S. Activators of protein kinase C inhibit sodium transport in A6 epithelia. Am J Physiol. 1986 Mar;250(3 Pt 1):C517–C522. doi: 10.1152/ajpcell.1986.250.3.C517. [DOI] [PubMed] [Google Scholar]
- Yu L., Gengaro P. E., Niederberger M., Burke T. J., Schrier R. W. Nitric oxide: a mediator in rat tubular hypoxia/reoxygenation injury. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1691–1695. doi: 10.1073/pnas.91.5.1691. [DOI] [PMC free article] [PubMed] [Google Scholar]