Abstract
The pathophysiology of familial combined hyperlipidemia (FCHL) is unknown, but altered lipid turnover in peripheral tissues as well as hepatic overproduction of apolipoprotein B have been suggested as possible causes. In the present study, we explored whether a change in triglyceride breakdown by lipolysis in fat cells is present in FCHL. Lipolysis activation by catecholamines was examined in isolated subcutaneous adipocytes from 10 patients with FCHL and 22 healthy control subjects. Lipolysis rate was linear for at least 3 h in both groups. However, a marked (approximately 65%) decrease in the lipolytic response to noradrenaline was found in FCHL. This was also true when lipolysis was maximally stimulated at the receptor level with isoprenaline (nonselective beta-adrenergic agonist), at the adenylyl cyclase level with forskolin, or at the level of the protein kinase hormone-sensitive lipase complex with dibutyryl cAMP. The maximum enzymatic activity of hormone-sensitive lipase was decreased by approximately 40% in FCHL. On the other hand, the lipolytic sensitivity of alpha 2-, beta 1-, and beta 2-adrenoceptors was normal in this condition, as was the number and affinity of beta 1- and beta 2-adrenoceptors. Variations in the maximum lipolysis rate correlated significantly with the variations in hormone-sensitive lipase activity in the whole material, and with the serum values for triglycerides, HDL cholesterol and apoB lipoprotein within the control group, but the serum triglyceride values in FCHL were higher than this correlation predicted. In conclusion, the data demonstrate a marked resistance to the lipolytic effect of catecholamines in fat cells from patients with FCHL, in spite of normal adrenoceptor function. The lipolytic defect appears predominantly to be due to a defect in hormone-sensitive lipase, and may be of importance in the pathophysiology of FCHL.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angelin B., Hershon K. S., Brunzell J. D. Bile acid metabolism in hereditary forms of hypertriglyceridemia: evidence for an increased synthesis rate in monogenic familial hypertriglyceridemia. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5434–5438. doi: 10.1073/pnas.84.15.5434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arner P., Arner O., Ostman J. The effect of local anaesthetic agents on lipolysis by human adipose tissue. Life Sci. 1973 Jul 16;13(2):161–169. doi: 10.1016/0024-3205(73)90191-4. [DOI] [PubMed] [Google Scholar]
- Arner P., Wahrenberg H., Lönnqvist F., Angelin B. Adipocyte beta-adrenoceptor sensitivity influences plasma lipid levels. Arterioscler Thromb. 1993 Jul;13(7):967–972. doi: 10.1161/01.atv.13.7.967. [DOI] [PubMed] [Google Scholar]
- Babirak S. P., Iverius P. H., Fujimoto W. Y., Brunzell J. D. Detection and characterization of the heterozygote state for lipoprotein lipase deficiency. Arteriosclerosis. 1989 May-Jun;9(3):326–334. doi: 10.1161/01.atv.9.3.326. [DOI] [PubMed] [Google Scholar]
- Baldo A., Sniderman A. D., St-Luce S., Avramoglu R. K., Maslowska M., Hoang B., Monge J. C., Bell A., Mulay S., Cianflone K. The adipsin-acylation stimulating protein system and regulation of intracellular triglyceride synthesis. J Clin Invest. 1993 Sep;92(3):1543–1547. doi: 10.1172/JCI116733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brunzell J. D., Albers J. J., Chait A., Grundy S. M., Groszek E., McDonald G. B. Plasma lipoproteins in familial combined hyperlipidemia and monogenic familial hypertriglyceridemia. J Lipid Res. 1983 Feb;24(2):147–155. [PubMed] [Google Scholar]
- Brunzell J. D., Schrott H. G., Motulsky A. G., Bierman E. L. Myocardial infarction in the familial forms of hypertriglyceridemia. Metabolism. 1976 Mar;25(3):313–320. doi: 10.1016/0026-0495(76)90089-5. [DOI] [PubMed] [Google Scholar]
- Cabezas M. C., de Bruin T. W., Kock L. A., Kortlandt W., Van Linde-Sibenius Trip M., Jansen H., Erkelens D. W. Simvastatin improves chylomicron remnant removal in familial combined hyperlipidemia without changing chylomicron conversion. Metabolism. 1993 Apr;42(4):497–503. doi: 10.1016/0026-0495(93)90109-2. [DOI] [PubMed] [Google Scholar]
- Castro Cabezas M., de Bruin T. W., de Valk H. W., Shoulders C. C., Jansen H., Willem Erkelens D. Impaired fatty acid metabolism in familial combined hyperlipidemia. A mechanism associating hepatic apolipoprotein B overproduction and insulin resistance. J Clin Invest. 1993 Jul;92(1):160–168. doi: 10.1172/JCI116544. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chait A., Albers J. J., Brunzell J. D. Very low density lipoprotein overproduction in genetic forms of hypertriglyceridaemia. Eur J Clin Invest. 1980 Feb;10(1):17–22. doi: 10.1111/j.1365-2362.1980.tb00004.x. [DOI] [PubMed] [Google Scholar]
- Cianflone K. M., Maslowska M. H., Sniderman A. D. Impaired response of fibroblasts from patients with hyperapobetalipoproteinemia to acylation-stimulating protein. J Clin Invest. 1990 Mar;85(3):722–730. doi: 10.1172/JCI114497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edens N. K., Leibel R. L., Hirsch J. Lipolytic effects on diacylglycerol accumulation in human adipose tissue in vitro. J Lipid Res. 1990 Aug;31(8):1351–1359. [PubMed] [Google Scholar]
- Ericsson S., Eriksson M., Berglund L., Angelin B. Metabolism of plasma low density lipoproteins in familial combined hyperlipidaemia: effect of acipimox therapy. J Intern Med. 1992 Oct;232(4):313–320. doi: 10.1111/j.1365-2796.1992.tb00591.x. [DOI] [PubMed] [Google Scholar]
- Frayn K. N., Langin D., Holm C., Belfrage P. Hormone-sensitive lipase: quantitation of enzyme activity and mRNA level in small biopsies of human adipose tissue. Clin Chim Acta. 1993 Jul 16;216(1-2):183–189. doi: 10.1016/0009-8981(93)90151-s. [DOI] [PubMed] [Google Scholar]
- Fredrikson G., Strålfors P., Nilsson N. O., Belfrage P. Hormone-sensitive lipase from adipose tissue of rat. Methods Enzymol. 1981;71(Pt 100):636–646. doi: 10.1016/0076-6879(81)71076-0. [DOI] [PubMed] [Google Scholar]
- Goldstein J. L., Schrott H. G., Hazzard W. R., Bierman E. L., Motulsky A. G. Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest. 1973 Jul;52(7):1544–1568. doi: 10.1172/JCI107332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayden M. R., Kirk H., Clark C., Frohlich J., Rabkin S., McLeod R., Hewitt J. DNA polymorphisms in and around the Apo-A1-CIII genes and genetic hyperlipidemias. Am J Hum Genet. 1987 May;40(5):421–430. [PMC free article] [PubMed] [Google Scholar]
- Hellmér J., Arner P., Lundin A. Automatic luminometric kinetic assay of glycerol for lipolysis studies. Anal Biochem. 1989 Feb 15;177(1):132–137. doi: 10.1016/0003-2697(89)90027-4. [DOI] [PubMed] [Google Scholar]
- Henriksson P., Angelin B., Berglund L. Hormonal regulation of serum Lp (a) levels. Opposite effects after estrogen treatment and orchidectomy in males with prostatic carcinoma. J Clin Invest. 1992 Apr;89(4):1166–1171. doi: 10.1172/JCI115699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirsch J., Gallian E. Methods for the determination of adipose cell size in man and animals. J Lipid Res. 1968 Jan;9(1):110–119. [PubMed] [Google Scholar]
- Hunt S. C., Wu L. L., Hopkins P. N., Stults B. M., Kuida H., Ramirez M. E., Lalouel J. M., Williams R. R. Apolipoprotein, low density lipoprotein subfraction, and insulin associations with familial combined hyperlipidemia. Study of Utah patients with familial dyslipidemic hypertension. Arteriosclerosis. 1989 May-Jun;9(3):335–344. doi: 10.1161/01.atv.9.3.335. [DOI] [PubMed] [Google Scholar]
- Janus E. D., Nicoll A. M., Turner P. R., Magill P., Lewis B. Kinetic bases of the primary hyperlipidaemias: studies of apolipoprotein B turnover in genetically defined subjects. Eur J Clin Invest. 1980 Apr;10(2 Pt 1):161–172. doi: 10.1111/j.1365-2362.1980.tb02076.x. [DOI] [PubMed] [Google Scholar]
- Kather H., Wieland E., Scheurer A., Vogel G., Wildenberg U., Joost C. Influences of variation in total energy intake and dietary composition on regulation of fat cell lipolysis in ideal-weight subjects. J Clin Invest. 1987 Aug;80(2):566–572. doi: 10.1172/JCI113105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kissebah A. H., Alfarsi S., Adams P. W. Integrated regulation of very low density lipoprotein triglyceride and apolipoprotein-B kinetics in man: normolipemic subjects, familial hypertriglyceridemia and familial combined hyperlipidemia. Metabolism. 1981 Sep;30(9):856–868. doi: 10.1016/0026-0495(81)90064-0. [DOI] [PubMed] [Google Scholar]
- Lafontan M., Berlan M. Fat cell adrenergic receptors and the control of white and brown fat cell function. J Lipid Res. 1993 Jul;34(7):1057–1091. [PubMed] [Google Scholar]
- Lönnqvist F., Nyberg B., Wahrenberg H., Arner P. Catecholamine-induced lipolysis in adipose tissue of the elderly. J Clin Invest. 1990 May;85(5):1614–1621. doi: 10.1172/JCI114612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lönnqvist F., Wahrenberg H., Hellström L., Reynisdottir S., Arner P. Lipolytic catecholamine resistance due to decreased beta 2-adrenoceptor expression in fat cells. J Clin Invest. 1992 Dec;90(6):2175–2186. doi: 10.1172/JCI116103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nikkilä E. A., Aro A. Family study of serum lipids and lipoproteins in coronary heart-disease. Lancet. 1973 May 5;1(7810):954–959. doi: 10.1016/s0140-6736(73)91598-5. [DOI] [PubMed] [Google Scholar]
- RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
- Rose H. G., Kranz P., Weinstock M., Juliano J., Haft J. I. Inheritance of combined hyperlipoproteinemia: evidence for a new lipoprotein phenotype. Am J Med. 1973 Feb;54(2):148–160. doi: 10.1016/0002-9343(73)90218-0. [DOI] [PubMed] [Google Scholar]
- Tate K. M., Briend-Sutren M. M., Emorine L. J., Delavier-Klutchko C., Marullo S., Strosberg A. D. Expression of three human beta-adrenergic-receptor subtypes in transfected Chinese hamster ovary cells. Eur J Biochem. 1991 Mar 14;196(2):357–361. doi: 10.1111/j.1432-1033.1991.tb15824.x. [DOI] [PubMed] [Google Scholar]
- Teng B., Forse A., Rodriguez A., Sniderman A. Adipose tissue glyceride synthesis in patients with hyperapobetalipoproteinemia. Can J Physiol Pharmacol. 1988 Mar;66(3):239–242. doi: 10.1139/y88-040. [DOI] [PubMed] [Google Scholar]
- Williams R. R., Hunt S. C., Hopkins P. N., Stults B. M., Wu L. L., Hasstedt S. J., Barlow G. K., Stephenson S. H., Lalouel J. M., Kuida H. Familial dyslipidemic hypertension. Evidence from 58 Utah families for a syndrome present in approximately 12% of patients with essential hypertension. JAMA. 1988 Jun 24;259(24):3579–3586. doi: 10.1001/jama.259.24.3579. [DOI] [PubMed] [Google Scholar]
- Wojciechowski A. P., Farrall M., Cullen P., Wilson T. M., Bayliss J. D., Farren B., Griffin B. A., Caslake M. J., Packard C. J., Shepherd J. Familial combined hyperlipidaemia linked to the apolipoprotein AI-CII-AIV gene cluster on chromosome 11q23-q24. Nature. 1991 Jan 10;349(6305):161–164. doi: 10.1038/349161a0. [DOI] [PubMed] [Google Scholar]