Abstract
Previous studies have suggested that an alteration in the expression of the Na,K-ATPase of muscle may be an important determinant of enhanced insulin sensitivity in chronic renal failure. Therefore, in the present studies we have examined the effect of uremia on the Na,K-ATPase alpha isoforms in skeletal muscle, at the level of mRNA expression and enzymatic activity. The activity of the sodium pump, as measured ouabain-sensitive 86Rb/K uptake in soleus muscle, revealed a reduction in the activity in uremia, related to the increment in plasma creatinine values. The decrement in 86Rb uptake by the rat soleus muscle of experimental animals was associated with changes on Na,K-ATPase gene product. Northern analysis of mRNA revealed isoform-specific regulation of Na,K-ATPase by uremia in skeletal muscle: a decrease of approximately 50% in alpha 1 subunit Na,K-ATPase mRNA, as compared to controls. The decrement in alpha 1 mRNA correlates with the decreased activity of the Na,K-ATPase in uremia, under basal conditions and with the almost complete inhibition of the Na,K-ATPase, of uremic tissue by a concentration of 10(-5) M ouabain. Although the activity of the alpha 2 isoform pump was not modified by uremia, the 3.4-kb message for this enzyme was increased 2.2-fold; this discrepancy is discussed. Altogether these findings demonstrate that the defective extrarenal potassium handling in uremia is at least dependent in the expression of alpha 1 subunit of the Na,K-ATPase.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alvo M., Krsulovic P., Fernández V., Espinoza A. M., Escobar M., Marusic E. T. Effect of a simultaneous potassium and carbohydrate load on extrarenal K homeostasis in end-stage renal failure. Nephron. 1989;53(2):133–137. doi: 10.1159/000185725. [DOI] [PubMed] [Google Scholar]
- Aziz N., Munro H. N. Iron regulates ferritin mRNA translation through a segment of its 5' untranslated region. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8478–8482. doi: 10.1073/pnas.84.23.8478. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bia M. J., DeFronzo R. A. Extrarenal potassium homeostasis. Am J Physiol. 1981 Apr;240(4):F257–F268. doi: 10.1152/ajprenal.1981.240.4.F257. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Druml W., Kelly R. A., May R. C., Mitch W. E. Abnormal cation transport in uremia. Mechanisms in adipocytes and skeletal muscle from uremic rats. J Clin Invest. 1988 Apr;81(4):1197–1203. doi: 10.1172/JCI113435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felsenfeld D. P., Sweadner K. J. Fine specificity mapping and topography of an isozyme-specific epitope of the Na,K-ATPase catalytic subunit. J Biol Chem. 1988 Aug 5;263(22):10932–10942. [PubMed] [Google Scholar]
- Fernandez J., Oster J. R., Perez G. O. Impaired extrarenal disposal of an acute oral potassium load in patients with endstage renal disease on chronic hemodialysis. Miner Electrolyte Metab. 1986;12(2):125–129. [PubMed] [Google Scholar]
- Fort P., Marty L., Piechaczyk M., el Sabrouty S., Dani C., Jeanteur P., Blanchard J. M. Various rat adult tissues express only one major mRNA species from the glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acids Res. 1985 Mar 11;13(5):1431–1442. doi: 10.1093/nar/13.5.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goecke I. A., Bonilla S., Marusic E. T., Alvo M. Enhanced insulin sensitivity in extrarenal potassium handling in uremic rats. Kidney Int. 1991 Jan;39(1):39–43. doi: 10.1038/ki.1991.5. [DOI] [PubMed] [Google Scholar]
- Graham J. A., Lawson D. H., Linton A. L. Muscle biopsy water and electrolyte contents in chronic renal failure. Clin Sci. 1970 May;38(5):583–591. doi: 10.1042/cs0380583. [DOI] [PubMed] [Google Scholar]
- Hansen O., Clausen T. Quantitative determination of Na+-K+-ATPase and other sarcolemmal components in muscle cells. Am J Physiol. 1988 Jan;254(1 Pt 1):C1–C7. doi: 10.1152/ajpcell.1988.254.1.C1. [DOI] [PubMed] [Google Scholar]
- Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
- Hayslett J. P., Binder H. J. Mechanism of potassium adaptation. Am J Physiol. 1982 Aug;243(2):F103–F112. doi: 10.1152/ajprenal.1982.243.2.F103. [DOI] [PubMed] [Google Scholar]
- Hayslett J. P., Myketey N., Binder H. J., Aronson P. S. Mechanism of increased potassium secretion in potassium loading and sodium deprivation. Am J Physiol. 1980 Oct;239(4):F378–F382. doi: 10.1152/ajprenal.1980.239.4.F378. [DOI] [PubMed] [Google Scholar]
- Herrera V. L., Chobanian A. V., Ruiz-Opazo N. Isoform-specific modulation of Na+, K+-ATPase alpha-subunit gene expression in hypertension. Science. 1988 Jul 8;241(4862):221–223. doi: 10.1126/science.2838907. [DOI] [PubMed] [Google Scholar]
- Horowitz B., Hensley C. B., Quintero M., Azuma K. K., Putnam D., McDonough A. A. Differential regulation of Na,K-ATPase alpha 1, alpha 2, and beta subunit mRNA and protein levels by thyroid hormone. J Biol Chem. 1990 Aug 25;265(24):14308–14314. [PubMed] [Google Scholar]
- Hsu Y. M., Guidotti G. Effects of hypokalemia on the properties and expression of the (Na+,K+)-ATPase of rat skeletal muscle. J Biol Chem. 1991 Jan 5;266(1):427–433. [PubMed] [Google Scholar]
- Kaji D., Thomas K. Na+-K+ pump in chronic renal failure. Am J Physiol. 1987 May;252(5 Pt 2):F785–F793. doi: 10.1152/ajprenal.1987.252.5.F785. [DOI] [PubMed] [Google Scholar]
- Labarca C., Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980 Mar 1;102(2):344–352. doi: 10.1016/0003-2697(80)90165-7. [DOI] [PubMed] [Google Scholar]
- Lytton J. Insulin affects the sodium affinity of the rat adipocyte (Na+,K+)-ATPase. J Biol Chem. 1985 Aug 25;260(18):10075–10080. [PubMed] [Google Scholar]
- Lytton J., Lin J. C., Guidotti G. Identification of two molecular forms of (Na+,K+)-ATPase in rat adipocytes. Relation to insulin stimulation of the enzyme. J Biol Chem. 1985 Jan 25;260(2):1177–1184. [PubMed] [Google Scholar]
- Mujais S. K. Renal memory after potassium adaptation: role of Na+-K+-ATPase. Am J Physiol. 1988 Jun;254(6 Pt 2):F845–F850. doi: 10.1152/ajprenal.1988.254.6.F845. [DOI] [PubMed] [Google Scholar]
- Patrick J., Jones N. F. Cell sodium, potassium and water in uraemia and the effects of regular dialysis as studied in the leucocyte. Clin Sci Mol Med. 1974 May;46(5):583–590. doi: 10.1042/cs0460583. [DOI] [PubMed] [Google Scholar]
- Shull G. E., Greeb J., Lingrel J. B. Molecular cloning of three distinct forms of the Na+,K+-ATPase alpha-subunit from rat brain. Biochemistry. 1986 Dec 16;25(25):8125–8132. doi: 10.1021/bi00373a001. [DOI] [PubMed] [Google Scholar]
- Sweadner K. J. Isozymes of the Na+/K+-ATPase. Biochim Biophys Acta. 1989 May 9;988(2):185–220. doi: 10.1016/0304-4157(89)90019-1. [DOI] [PubMed] [Google Scholar]
- Sweadner K. J. Two molecular forms of (Na+ + K+)-stimulated ATPase in brain. Separation, and difference in affinity for strophanthidin. J Biol Chem. 1979 Jul 10;254(13):6060–6067. [PubMed] [Google Scholar]
- Takeyasu K., Tamkun M. M., Renaud K. J., Fambrough D. M. Ouabain-sensitive (Na+ + K+)-ATPase activity expressed in mouse L cells by transfection with DNA encoding the alpha-subunit of an avian sodium pump. J Biol Chem. 1988 Mar 25;263(9):4347–4354. [PubMed] [Google Scholar]
- Taormino J. P., Fambrough D. M. Pre-translational regulation of the (Na+ + K+)-ATPase in response to demand for ion transport in cultured chicken skeletal muscle. J Biol Chem. 1990 Mar 5;265(7):4116–4123. [PubMed] [Google Scholar]


