Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 May;95(5):2266–2274. doi: 10.1172/JCI117917

Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques.

M R Bennett 1, G I Evan 1, S M Schwartz 1
PMCID: PMC295839  PMID: 7738191

Abstract

We studied death of human vascular smooth muscle cells derived from coronary plaques and normal coronary arteries and aorta. Cells from normal arteries underwent death only upon removal of serum growth factors. In contrast, plaque-derived cells died even in high serum conditions, and death increased after serum withdrawal. Death was characteristically by apoptosis in both normal and plaque-derived cells, as determined by time-lapse videomicroscopy, electron microscopy, and DNA fragmentation patterns. IGF-1 and PDGF were identified as potent survival factors in serum, whereas EGF and basic fibroblast growth factor had little effect. Stable expression of bcl-2, a protooncogene that regulates apoptosis in other cell lines, protected smooth muscle cells from apoptosis, although there was no detectable difference in endogenous bcl-2 expression between cells from plaques or normal vessels. We conclude that apoptosis of human vascular smooth muscle cells is regulated by both specific gene products and local cytokines acting as survival factors. Apoptosis may therefore regulate cell mass in the normal arterial wall and the higher rates of apoptosis seen in plaque smooth muscle cells may ultimately contribute to plaque rupture and breakdown and thus to the clinical sequelae of atherosclerosis.

Full text

PDF
2266

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Araki S., Shimada Y., Kaji K., Hayashi H. Apoptosis of vascular endothelial cells by fibroblast growth factor deprivation. Biochem Biophys Res Commun. 1990 May 16;168(3):1194–1200. doi: 10.1016/0006-291x(90)91155-l. [DOI] [PubMed] [Google Scholar]
  2. Arbustini E., Grasso M., Diegoli M., Pucci A., Bramerio M., Ardissino D., Angoli L., de Servi S., Bramucci E., Mussini A. Coronary atherosclerotic plaques with and without thrombus in ischemic heart syndromes: a morphologic, immunohistochemical, and biochemical study. Am J Cardiol. 1991 Sep 3;68(7):36B–50B. doi: 10.1016/0002-9149(91)90383-v. [DOI] [PubMed] [Google Scholar]
  3. Benditt E. P., Benditt J. M. Evidence for a monoclonal origin of human atherosclerotic plaques. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1753–1756. doi: 10.1073/pnas.70.6.1753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bennett M. R., Anglin S., McEwan J. R., Jagoe R., Newby A. C., Evan G. I. Inhibition of vascular smooth muscle cell proliferation in vitro and in vivo by c-myc antisense oligodeoxynucleotides. J Clin Invest. 1994 Feb;93(2):820–828. doi: 10.1172/JCI117036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bennett M. R., Evan G. I., Newby A. C. Deregulated expression of the c-myc oncogene abolishes inhibition of proliferation of rat vascular smooth muscle cells by serum reduction, interferon-gamma, heparin, and cyclic nucleotide analogues and induces apoptosis. Circ Res. 1994 Mar;74(3):525–536. doi: 10.1161/01.res.74.3.525. [DOI] [PubMed] [Google Scholar]
  6. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  7. Cho A., Courtman D. W., Langille B. L. Apoptosis (programmed cell death) in arteries of the neonatal lamb. Circ Res. 1995 Feb;76(2):168–175. doi: 10.1161/01.res.76.2.168. [DOI] [PubMed] [Google Scholar]
  8. Dartsch P. C., Voisard R., Betz E. In vitro growth characteristics of human atherosclerotic plaque cells: comparison of cells from primary stenosing and restenosing lesions of peripheral and coronary arteries. Res Exp Med (Berl) 1990;190(2):77–87. doi: 10.1007/pl00020009. [DOI] [PubMed] [Google Scholar]
  9. Esterbauer H., Wäg G., Puhl H. Lipid peroxidation and its role in atherosclerosis. Br Med Bull. 1993 Jul;49(3):566–576. doi: 10.1093/oxfordjournals.bmb.a072631. [DOI] [PubMed] [Google Scholar]
  10. Evan G. I., Wyllie A. H., Gilbert C. S., Littlewood T. D., Land H., Brooks M., Waters C. M., Penn L. Z., Hancock D. C. Induction of apoptosis in fibroblasts by c-myc protein. Cell. 1992 Apr 3;69(1):119–128. doi: 10.1016/0092-8674(92)90123-t. [DOI] [PubMed] [Google Scholar]
  11. Fanidi A., Harrington E. A., Evan G. I. Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature. 1992 Oct 8;359(6395):554–556. doi: 10.1038/359554a0. [DOI] [PubMed] [Google Scholar]
  12. Garratt K. N., Edwards W. D., Kaufmann U. P., Vlietstra R. E., Holmes D. R., Jr Differential histopathology of primary atherosclerotic and restenotic lesions in coronary arteries and saphenous vein bypass grafts: analysis of tissue obtained from 73 patients by directional atherectomy. J Am Coll Cardiol. 1991 Feb;17(2):442–448. doi: 10.1016/s0735-1097(10)80113-5. [DOI] [PubMed] [Google Scholar]
  13. Gordon D., Reidy M. A., Benditt E. P., Schwartz S. M. Cell proliferation in human coronary arteries. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4600–4604. doi: 10.1073/pnas.87.12.4600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Grotendorst G. R., Igarashi A., Larson R., Soma Y., Charette M. Differential binding, biological and biochemical actions of recombinant PDGF AA, AB, and BB molecules on connective tissue cells. J Cell Physiol. 1991 Nov;149(2):235–243. doi: 10.1002/jcp.1041490209. [DOI] [PubMed] [Google Scholar]
  15. Guyton J. R., Black B. L., Seidel C. L. Focal toxicity of oxysterols in vascular smooth muscle cell culture. A model of the atherosclerotic core region. Am J Pathol. 1990 Aug;137(2):425–434. [PMC free article] [PubMed] [Google Scholar]
  16. Harrington E. A., Bennett M. R., Fanidi A., Evan G. I. c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines. EMBO J. 1994 Jul 15;13(14):3286–3295. doi: 10.1002/j.1460-2075.1994.tb06630.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hockenbery D. M., Oltvai Z. N., Yin X. M., Milliman C. L., Korsmeyer S. J. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell. 1993 Oct 22;75(2):241–251. doi: 10.1016/0092-8674(93)80066-n. [DOI] [PubMed] [Google Scholar]
  18. Hockenbery D., Nuñez G., Milliman C., Schreiber R. D., Korsmeyer S. J. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature. 1990 Nov 22;348(6299):334–336. doi: 10.1038/348334a0. [DOI] [PubMed] [Google Scholar]
  19. Hwang D. L., Latus L. J., Lev-Ran A. Effects of platelet-contained growth factors (PDGF, EGF, IGF-I, and TGF-beta) on DNA synthesis in porcine aortic smooth muscle cells in culture. Exp Cell Res. 1992 Jun;200(2):358–360. doi: 10.1016/0014-4827(92)90183-9. [DOI] [PubMed] [Google Scholar]
  20. Inui H., Kitami Y., Kondo T., Inagami T. Transduction of mitogenic activity of platelet-derived growth factor (PDGF) AB by PDGF-beta receptor without participation of PDGF-alpha receptor in vascular smooth muscle cells. J Biol Chem. 1993 Aug 15;268(23):17045–17050. [PubMed] [Google Scholar]
  21. Jacobson M. D., Burne J. F., King M. P., Miyashita T., Reed J. C., Raff M. C. Bcl-2 blocks apoptosis in cells lacking mitochondrial DNA. Nature. 1993 Jan 28;361(6410):365–369. doi: 10.1038/361365a0. [DOI] [PubMed] [Google Scholar]
  22. Moss N. S., Benditt E. P. Human atherosclerotic plaque cells and leiomyoma cells. Comparison of in vitro growth characteristics. Am J Pathol. 1975 Feb;78(2):175–190. [PMC free article] [PubMed] [Google Scholar]
  23. O'Brien E. R., Alpers C. E., Stewart D. K., Ferguson M., Tran N., Gordon D., Benditt E. P., Hinohara T., Simpson J. B., Schwartz S. M. Proliferation in primary and restenotic coronary atherectomy tissue. Implications for antiproliferative therapy. Circ Res. 1993 Aug;73(2):223–231. doi: 10.1161/01.res.73.2.223. [DOI] [PubMed] [Google Scholar]
  24. Parkes J. L., Cardell R. R., Hubbard F. C., Jr, Hubbard D., Meltzer A., Penn A. Cultured human atherosclerotic plaque smooth muscle cells retain transforming potential and display enhanced expression of the myc protooncogene. Am J Pathol. 1991 Mar;138(3):765–775. [PMC free article] [PubMed] [Google Scholar]
  25. Reed J. C. Bcl-2 and the regulation of programmed cell death. J Cell Biol. 1994 Jan;124(1-2):1–6. doi: 10.1083/jcb.124.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Reid V. C., Hardwick S. J., Mitchinson M. J. Fragmentation of DNA in P388D1 macrophages exposed to oxidised low-density lipoprotein. FEBS Lett. 1993 Oct 18;332(3):218–220. doi: 10.1016/0014-5793(93)80635-8. [DOI] [PubMed] [Google Scholar]
  27. Ross R., Wight T. N., Strandness E., Thiele B. Human atherosclerosis. I. Cell constitution and characteristics of advanced lesions of the superficial femoral artery. Am J Pathol. 1984 Jan;114(1):79–93. [PMC free article] [PubMed] [Google Scholar]
  28. Schöllmann C., Grugel R., Tatje D., Hoppe J., Folkman J., Marmé D., Weich H. A. Basic fibroblast growth factor modulates the mitogenic potency of the platelet-derived growth factor (PDGF) isoforms by specific upregulation of the PDGF alpha receptor in vascular smooth muscle cells. J Biol Chem. 1992 Sep 5;267(25):18032–18039. [PubMed] [Google Scholar]
  29. Thomas W. A., Kim D. N., Lee K. T., Reiner J. M., Schmee J. Population dynamics of arterial cells during atherogenesis. XIII. Mitogenic and cytotoxic effects of a hyperlipidemic (HL) diet on cells in advanced lesions in the abdominal aortas of swine fed an HL diet for 270-345 days. Exp Mol Pathol. 1983 Dec;39(3):257–270. doi: 10.1016/0014-4800(83)90056-4. [DOI] [PubMed] [Google Scholar]
  30. Thomas W. A., Reiner J. M., Florentin F. A., Lee K. T., Lee W. M. Population dynamics of arterial smooth muscle cells. V. Cell proliferation and cell death during initial 3 months in atherosclerotic lesions induced in swine by hypercholesterolemic diet and intimal trauma. Exp Mol Pathol. 1976 Jun;24(3):360–374. doi: 10.1016/0014-4800(76)90071-x. [DOI] [PubMed] [Google Scholar]
  31. Thomas W. A., Scott R. F., Florentin R. A., Reiner J. M., Lee K. T. Population dynamics of arterial cells during atherogenesis. XI. Slowdown in multiplication and death rates of lesion smooth muscle cells in swine during the period 105-165 days after balloon endothelial cell denudation followed by a hyperlipidemic diet. Exp Mol Pathol. 1981 Oct;35(2):153–162. doi: 10.1016/0014-4800(81)90055-1. [DOI] [PubMed] [Google Scholar]
  32. Wyllie A. H. Apoptosis and the regulation of cell numbers in normal and neoplastic tissues: an overview. Cancer Metastasis Rev. 1992 Sep;11(2):95–103. doi: 10.1007/BF00048057. [DOI] [PubMed] [Google Scholar]
  33. Wyllie A. H. Apoptosis: cell death in tissue regulation. J Pathol. 1987 Dec;153(4):313–316. doi: 10.1002/path.1711530404. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES