Abstract
Isocapnic dry gas hyperventilation provokes hyperpnea-induced bronchoconstriction in guinea pigs by releasing tachykinins from airway sensory C-fiber neurons. It is unknown whether dry gas hyperpnea directly stimulates C-fibers to release tachykinins, or whether this physical stimulus initiates a mediator cascade that indirectly stimulates C-fiber tachykinin release. We tested the hypotheses that mucosal hypothermia and/or hyperosmolarity--physical consequences of airway heat and water loss imposed by dry gas hyperpnea--can directly stimulate C-fiber tachykinin release. Neurons isolated from neonatal rat dorsal root ganglia were maintained in primary culture for 1 wk. Cells were then exposed for 30 min at 37 degrees C to graded concentrations of NaCl, mannitol, sucrose, or glycerol (0-600 mOsm) added to isotonic medium, or to isotonic medium at 25 degrees C without or with 462 mOsm mannitol added. Fractional release of substance P (SP) was calculated from supernatant and intracellular SP contents following exposure. Hyperosmolar solutions containing excess NaCl, mannitol, or sucrose all increased fractional SP release equivalently, in an osmolarity-dependent fashion. In marked contrast, hypothermia had no effect on fractional SP release under isotonic or hypertonic conditions. Thus, hyperosmolarity, but not hypothermia, can directly stimulate tachykinin release from cultured rat sensory C-fibers. The lack of effect of glycerol, a solute which quickly crosses cell membranes, suggests that neuronal volume change represents the physical stimulus transduced by C-fibers during hyperosmolar exposure.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson S. D., Schoeffel R. E., Follet R., Perry C. P., Daviskas E., Kendall M. Sensitivity to heat and water loss at rest and during exercise in asthmatic patients. Eur J Respir Dis. 1982 Sep;63(5):459–471. [PubMed] [Google Scholar]
- Barbet J. P., Chauveau M., Labbé S., Lockhart A. Breathing dry air causes acute epithelial damage and inflammation of the guinea pig trachea. J Appl Physiol (1985) 1988 May;64(5):1851–1857. doi: 10.1152/jappl.1988.64.5.1851. [DOI] [PubMed] [Google Scholar]
- Bekkers J. M., Stevens C. F. NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus. Nature. 1989 Sep 21;341(6239):230–233. doi: 10.1038/341230a0. [DOI] [PubMed] [Google Scholar]
- Bindokas V. P., Brorson J. R., Miller R. J. Characteristics of voltage sensitive calcium channels in dendrites of cultured rat cerebellar neurons. Neuropharmacology. 1993 Nov;32(11):1213–1220. doi: 10.1016/0028-3908(93)90015-u. [DOI] [PubMed] [Google Scholar]
- Blackie S. P., Hilliam C., Village R., Paré P. D. The time course of bronchoconstriction in asthmatics during and after isocapnic hyperventilation. Am Rev Respir Dis. 1990 Nov;142(5):1133–1136. doi: 10.1164/ajrccm/142.5.1133. [DOI] [PubMed] [Google Scholar]
- Bloomquist E. I., Kream R. M. Leukotriene D4 acts in part to contract guinea pig ileum smooth muscle by releasing substance P. J Pharmacol Exp Ther. 1987 Feb;240(2):523–528. [PubMed] [Google Scholar]
- Bloomquist E. I., Kream R. M. Release of substance P from guinea pig trachea leukotriene D4. Exp Lung Res. 1990 Nov-Dec;16(6):645–659. doi: 10.3109/01902149009087886. [DOI] [PubMed] [Google Scholar]
- Boucher R. C., Stutts M. J., Bromberg P. A., Gatzy J. T. Regional differences in airway surface liquid composition. J Appl Physiol Respir Environ Exerc Physiol. 1981 Mar;50(3):613–620. doi: 10.1152/jappl.1981.50.3.613. [DOI] [PubMed] [Google Scholar]
- Chapman R. W., Danko G. Hyperventilation-induced bronchoconstriction in guinea pigs. Int Arch Allergy Appl Immunol. 1985;78(2):190–196. doi: 10.1159/000233883. [DOI] [PubMed] [Google Scholar]
- Dooley D. C. Glycerol permeation of the human granulocyte. Exp Hematol. 1982 May;10(5):413–422. [PubMed] [Google Scholar]
- Eggleston P. A., Kagey-Sobotka A., Lichtenstein L. M. A comparison of the osmotic activation of basophils and human lung mast cells. Am Rev Respir Dis. 1987 May;135(5):1043–1048. doi: 10.1164/arrd.1987.135.5.1043. [DOI] [PubMed] [Google Scholar]
- Ellis J. L., Undem B. J. Role of peptidoleukotrienes in capsaicin-sensitive sensory fibre-mediated responses in guinea-pig airways. J Physiol. 1991 May;436:469–484. doi: 10.1113/jphysiol.1991.sp018561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FATT P., KATZ B. Spontaneous subthreshold activity at motor nerve endings. J Physiol. 1952 May;117(1):109–128. [PMC free article] [PubMed] [Google Scholar]
- Folkesson R., Neil A., Terenius L. Enzyme-linked immunosorbent assay of substance P and its metabolite SP 1-7. A comparison with RIA. J Neurosci Methods. 1985 Aug;14(3):169–176. doi: 10.1016/0165-0270(85)90032-9. [DOI] [PubMed] [Google Scholar]
- Garland A., Ray D. W., Doerschuk C. M., Alger L., Eappon S., Hernandez C., Jackson M., Solway J. Role of tachykinins in hyperpnea-induced bronchovascular hyperpermeability in guinea pigs. J Appl Physiol (1985) 1991 Jan;70(1):27–35. doi: 10.1152/jappl.1991.70.1.27. [DOI] [PubMed] [Google Scholar]
- Kummer W., Fischer A., Kurkowski R., Heym C. The sensory and sympathetic innervation of guinea-pig lung and trachea as studied by retrograde neuronal tracing and double-labelling immunohistochemistry. Neuroscience. 1992 Aug;49(3):715–737. doi: 10.1016/0306-4522(92)90239-x. [DOI] [PubMed] [Google Scholar]
- Lundberg J. M., Hökfelt T., Martling C. R., Saria A., Cuello C. Substance P-immunoreactive sensory nerves in the lower respiratory tract of various mammals including man. Cell Tissue Res. 1984;235(2):251–261. doi: 10.1007/BF00217848. [DOI] [PubMed] [Google Scholar]
- Lundberg J. M., Hökfelt T., Martling C. R., Saria A., Cuello C. Substance P-immunoreactive sensory nerves in the lower respiratory tract of various mammals including man. Cell Tissue Res. 1984;235(2):251–261. doi: 10.1007/BF00217848. [DOI] [PubMed] [Google Scholar]
- MacLean D. B., Lewis S. F., Wheeler F. B. Substance P content in cultured neonatal rat vagal sensory neurons: the effect of nerve growth factor. Brain Res. 1988 Aug 2;457(1):53–62. doi: 10.1016/0006-8993(88)90056-x. [DOI] [PubMed] [Google Scholar]
- Martins M. A., Shore S. A., Drazen J. M. Release of tachykinins by histamine, methacholine, PAF, LTD4, and substance P from guinea pig lungs. Am J Physiol. 1991 Dec;261(6 Pt 1):L449–L455. doi: 10.1152/ajplung.1991.261.6.L449. [DOI] [PubMed] [Google Scholar]
- Martling C. R. Sensory nerves containing tachykinins and CGRP in the lower airways. Functional implications for bronchoconstriction, vasodilatation and protein extravasation. Acta Physiol Scand Suppl. 1987;563:1–57. [PubMed] [Google Scholar]
- McDonald D. M. Respiratory tract infections increase susceptibility to neurogenic inflammation in the rat trachea. Am Rev Respir Dis. 1988 Jun;137(6):1432–1440. doi: 10.1164/ajrccm/137.6.1432. [DOI] [PubMed] [Google Scholar]
- McFadden E. R., Jr, Stearns D. R., Ingram R. H., Jr, Leith D. E. Relative contributions of hypocarbia and hyperpnea as mechanisms in postexercise asthma. J Appl Physiol Respir Environ Exerc Physiol. 1977 Jan;42(1):22–27. doi: 10.1152/jappl.1977.42.1.22. [DOI] [PubMed] [Google Scholar]
- Merighi A., Polak J. M., Gibson S. J., Gulbenkian S., Valentino K. L., Peirone S. M. Ultrastructural studies on calcitonin gene-related peptide-, tachykinins- and somatostatin-immunoreactive neurones in rat dorsal root ganglia: evidence for the colocalization of different peptides in single secretory granules. Cell Tissue Res. 1988 Oct;254(1):101–109. doi: 10.1007/BF00220022. [DOI] [PubMed] [Google Scholar]
- Rambourg A., Clermont Y., Beaudet A. Ultrastructural features of six types of neurons in rat dorsal root ganglia. J Neurocytol. 1983 Feb;12(1):47–66. doi: 10.1007/BF01148087. [DOI] [PubMed] [Google Scholar]
- Ray D. W., Hernandez C., Leff A. R., Drazen J. M., Solway J. Tachykinins mediate bronchoconstriction elicited by isocapnic hyperpnea in guinea pigs. J Appl Physiol (1985) 1989 Mar;66(3):1108–1112. doi: 10.1152/jappl.1989.66.3.1108. [DOI] [PubMed] [Google Scholar]
- Ray D. W., Hernandez C., Munoz N., Leff A. R., Solway J. Bronchoconstriction elicited by isocapnic hyperpnea in guinea pigs. J Appl Physiol (1985) 1988 Aug;65(2):934–939. doi: 10.1152/jappl.1988.65.2.934. [DOI] [PubMed] [Google Scholar]
- Ray D. W., Ingenito E. P., Strek M., Schumacker P. T., Solway J. Longitudinal distribution of canine respiratory heat and water exchanges. J Appl Physiol (1985) 1989 Jun;66(6):2788–2798. doi: 10.1152/jappl.1989.66.6.2788. [DOI] [PubMed] [Google Scholar]
- Saria A., Martling C. R., Yan Z., Theodorsson-Norheim E., Gamse R., Lundberg J. M. Release of multiple tachykinins from capsaicin-sensitive sensory nerves in the lung by bradykinin, histamine, dimethylphenyl piperazinium, and vagal nerve stimulation. Am Rev Respir Dis. 1988 Jun;137(6):1330–1335. doi: 10.1164/ajrccm/137.6.1330. [DOI] [PubMed] [Google Scholar]
- Sheppard D., Epstein J., Holtzman M. J., Nadel J. A., Boushey H. A. Dose-dependent inhibition of cold air-induced bronchoconstriction by atropine. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jul;53(1):169–174. doi: 10.1152/jappl.1982.53.1.169. [DOI] [PubMed] [Google Scholar]
- Solway J., Kao B. M., Jordan J. E., Gitter B., Rodger I. W., Howbert J. J., Alger L. E., Necheles J., Leff A. R., Garland A. Tachykinin receptor antagonists inhibit hyperpnea-induced bronchoconstriction in guinea pigs. J Clin Invest. 1993 Jul;92(1):315–323. doi: 10.1172/JCI116569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ueda N., Muramatsu I., Fujiwara M. Prostaglandins enhance trigeminal substance P-ergic responses in the rabbit iris sphincter muscles. Brain Res. 1985 Jul 1;337(2):347–351. doi: 10.1016/0006-8993(85)90073-3. [DOI] [PubMed] [Google Scholar]
- Umeno E., McDonald D. M., Nadel J. A. Hypertonic saline increases vascular permeability in the rat trachea by producing neurogenic inflammation. J Clin Invest. 1990 Jun;85(6):1905–1908. doi: 10.1172/JCI114652. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Oostdam J. C., Walker D. C., Knudson K., Dirks P., Dahlby R. W., Hogg J. C. Effect of breathing dry air on structure and function of airways. J Appl Physiol (1985) 1986 Jul;61(1):312–317. doi: 10.1152/jappl.1986.61.1.312. [DOI] [PubMed] [Google Scholar]
- Weinreich D., Wonderlin W. F. Inhibition of calcium-dependent spike after-hyperpolarization increases excitability of rabbit visceral sensory neurones. J Physiol. 1987 Dec;394:415–427. doi: 10.1113/jphysiol.1987.sp016878. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanagisawa M., Otsuka M., García-Arrarás J. E. E-type prostaglandins depolarize primary afferent neurons of the neonatal rat. Neurosci Lett. 1986 Aug 4;68(3):351–355. doi: 10.1016/0304-3940(86)90515-x. [DOI] [PubMed] [Google Scholar]
- Zeballos R. J., Shturman-Ellstein R., McNally J. F., Jr, Hirsch J. E., Souhrada J. F. The role of hyperventilation in exercise-induced bronchoconstriction. Am Rev Respir Dis. 1978 Nov;118(5):877–884. doi: 10.1164/arrd.1978.118.5.877. [DOI] [PubMed] [Google Scholar]