Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 May;95(5):2367–2372. doi: 10.1172/JCI117929

Muscle protein waste in tumor-bearing rats is effectively antagonized by a beta 2-adrenergic agonist (clenbuterol). Role of the ATP-ubiquitin-dependent proteolytic pathway.

P Costelli 1, C García-Martínez 1, M Llovera 1, N Carbó 1, F J López-Soriano 1, N Agell 1, L Tessitore 1, F M Baccino 1, J M Argilés 1
PMCID: PMC295859  PMID: 7738199

Abstract

Tissue protein hypercatabolism (TPH) is a most important feature in cancer cachexia, particularly with regard to the skeletal muscle. The rat ascites hepatoma Yoshida AH-130 is a very suitable model system for studying the mechanisms involved in the processes that lead to tissue depletion, since it induces in the host a rapid and progressive muscle waste mainly due to TPH (Tessitore, L., G. Bonelli, and F. M. Baccino. 1987. Biochem. J. 241:153-159). Detectable plasma levels of tumor necrosis factor-alpha associated with marked perturbations in the hormonal homeostasis have been shown to concur in forcing metabolism into a catabolic setting (Tessitore, L., P. Costelli, and F. M. Baccino. 1993. Br. J. Cancer. 67:15-23). The present study was directed to investigate if beta 2-adrenergic agonists, which are known to favor skeletal muscle hypertrophy, could effectively antagonize the enhanced muscle protein breakdown in this cancer cachexia model. One such agent, i.e., clenbuterol, indeed largely prevented skeletal muscle waste in AH-130-bearing rats by restoring protein degradative rates close to control values. This normalization of protein breakdown rates was achieved through a decrease of the hyperactivation of the ATP-ubiquitin-dependent proteolytic pathway, as previously demonstrated in our laboratory (Llovera, M., C. García-Martínez, N. Agell, M. Marzábal, F. J. López-Soriano, and J. M. Argilés. 1994. FEBS (Fed. Eur. Biochem. Soc.) Lett. 338:311-318). By contrast, the drug did not exert any measurable effect on various parenchymal organs, nor did it modify the plasma level of corticosterone and insulin, which were increased and decreased, respectively, in the tumor hosts. The present data give new insights into the mechanisms by which clenbuterol exerts its preventive effect on muscle protein waste and seem to warrant the implementation of experimental protocols involving the use of clenbuterol or alike drugs in the treatment of pathological states involving TPH, particularly in skeletal muscle and heart, such as in the present model of cancer cachexia.

Full text

PDF
2367

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albano J. D., Ekins R. P., Maritz G., Turner R. C. A sensitive, precise radioimmunoassay of serum insulin relying on charcoal separation of bound and free hormone moieties. Acta Endocrinol (Copenh) 1972 Jul;70(3):487–509. doi: 10.1530/acta.0.0700487. [DOI] [PubMed] [Google Scholar]
  2. Baccino F. M., Tessitore L., Bonelli G., Isidoro C. Protein turnover states of tumour cells and host tissues in an experimental model. Biomed Biochim Acta. 1986;45(11-12):1585–1590. [PubMed] [Google Scholar]
  3. Beck S. A., Smith K. L., Tisdale M. J. Anticachectic and antitumor effect of eicosapentaenoic acid and its effect on protein turnover. Cancer Res. 1991 Nov 15;51(22):6089–6093. [PubMed] [Google Scholar]
  4. Beck S. A., Tisdale M. J. Nitrogen excretion in cancer cachexia and its modification by a high fat diet in mice. Cancer Res. 1989 Jul 15;49(14):3800–3804. [PubMed] [Google Scholar]
  5. Belahsen R., Deshaies Y. Modulation of lipoprotein lipase activity in the rat by the beta 2-adrenergic agonist clenbuterol. Can J Physiol Pharmacol. 1992 Dec;70(12):1555–1562. doi: 10.1139/y92-223. [DOI] [PubMed] [Google Scholar]
  6. Bond U., Agell N., Haas A. L., Redman K., Schlesinger M. J. Ubiquitin in stressed chicken embryo fibroblasts. J Biol Chem. 1988 Feb 15;263(5):2384–2388. [PubMed] [Google Scholar]
  7. Bond U., Schlesinger M. J. Ubiquitin is a heat shock protein in chicken embryo fibroblasts. Mol Cell Biol. 1985 May;5(5):949–956. doi: 10.1128/mcb.5.5.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carbó N., Costelli P., Tessitore L., Bagby G. J., López-Soriano F. J., Baccino F. M., Argilés J. M. Anti-tumour necrosis factor-alpha treatment interferes with changes in lipid metabolism in a tumour cachexia model. Clin Sci (Lond) 1994 Sep;87(3):349–355. doi: 10.1042/cs0870349. [DOI] [PubMed] [Google Scholar]
  9. Carter W. J., Dang A. Q., Faas F. H., Lynch M. E. Effects of clenbuterol on skeletal muscle mass, body composition, and recovery from surgical stress in senescent rats. Metabolism. 1991 Aug;40(8):855–860. doi: 10.1016/0026-0495(91)90015-o. [DOI] [PubMed] [Google Scholar]
  10. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  11. Choo J. J., Horan M. A., Little R. A., Rothwell N. J. Muscle wasting associated with endotoxemia in the rat: modification by the beta 2-adrenoceptor agonist clenbuterol. Biosci Rep. 1989 Oct;9(5):615–621. doi: 10.1007/BF01119805. [DOI] [PubMed] [Google Scholar]
  12. Ciechanover A., Finley D., Varshavsky A. Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell. 1984 May;37(1):57–66. doi: 10.1016/0092-8674(84)90300-3. [DOI] [PubMed] [Google Scholar]
  13. Costelli P., Carbó N., Tessitore L., Bagby G. J., Lopez-Soriano F. J., Argilés J. M., Baccino F. M. Tumor necrosis factor-alpha mediates changes in tissue protein turnover in a rat cancer cachexia model. J Clin Invest. 1993 Dec;92(6):2783–2789. doi: 10.1172/JCI116897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Deshaies Y., Willemot J., Leblanc J. Protein synthesis, amino acid uptake, and pools during isoproterenol-induced hypertrophy of the rat heart and tibialis muscle. Can J Physiol Pharmacol. 1981 Feb;59(2):113–121. doi: 10.1139/y81-020. [DOI] [PubMed] [Google Scholar]
  15. Dessí S., Batetta B., Anchisi C., Pani P., Costelli P., Tessitore L., Baccino F. M. Cholesterol metabolism during the growth of a rat ascites hepatoma (Yoshida AH-130). Br J Cancer. 1992 Nov;66(5):787–793. doi: 10.1038/bjc.1992.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Emery P. W., Rothwell N. J., Stock M. J., Winter P. D. Chronic effects of beta 2-adrenergic agonists on body composition and protein synthesis in the rat. Biosci Rep. 1984 Jan;4(1):83–91. doi: 10.1007/BF01120827. [DOI] [PubMed] [Google Scholar]
  17. Garber A. J., Karl I. E., Kipnis D. M. Alanine and glutamine synthesis and release from skeletal muscle. IV. beta-Adrenergic inhibition of amino acid release. J Biol Chem. 1976 Feb 10;251(3):851–857. [PubMed] [Google Scholar]
  18. Garlick P. J., Millward D. J., James W. P., Waterlow J. C. The effect of protein deprivation and starvation on the rate of protein synthesis in tissues of the rat. Biochim Biophys Acta. 1975 Nov 18;414(1):71–84. doi: 10.1016/0005-2787(75)90126-4. [DOI] [PubMed] [Google Scholar]
  19. Hilenski L. L., Terracio L., Haas A. L., Borg T. K. Immunolocalization of ubiquitin conjugates at Z-bands and intercalated discs of rat cardiomyocytes in vitro and in vivo. J Histochem Cytochem. 1992 Jul;40(7):1037–1042. doi: 10.1177/40.7.1318894. [DOI] [PubMed] [Google Scholar]
  20. Kien C. L., Camitta B. M. Close association of accelerated rates of whole body protein turnover (synthesis and breakdown) and energy expenditure in children with newly diagnosed acute lymphocytic leukemia. JPEN J Parenter Enteral Nutr. 1987 Mar-Apr;11(2):129–134. doi: 10.1177/0148607187011002129. [DOI] [PubMed] [Google Scholar]
  21. Kien C. L., Camitta B. M. Increased whole-body protein turnover in sick children with newly diagnosed leukemia or lymphoma. Cancer Res. 1983 Nov;43(11):5586–5592. [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. Lawson D. H., Richmond A., Nixon D. W., Rudman D. Metabolic approaches to cancer cachexia. Annu Rev Nutr. 1982;2:277–301. doi: 10.1146/annurev.nu.02.070182.001425. [DOI] [PubMed] [Google Scholar]
  24. Llovera M., García-Martínez C., Agell N., Marzábal M., López-Soriano F. J., Argilés J. M. Ubiquitin gene expression is increased in skeletal muscle of tumour-bearing rats. FEBS Lett. 1994 Feb 7;338(3):311–318. doi: 10.1016/0014-5793(94)80290-4. [DOI] [PubMed] [Google Scholar]
  25. Lowell B. B., Ruderman N. B., Goodman M. N. Evidence that lysosomes are not involved in the degradation of myofibrillar proteins in rat skeletal muscle. Biochem J. 1986 Feb 15;234(1):237–240. doi: 10.1042/bj2340237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lundholm K., Ekman L., Edström S., Karlberg I., Jagenburg R., Scherstén T. Protein synthesis in liver tissue under the influence of a methylcholanthrene-induced sarcoma in mice. Cancer Res. 1979 Nov;39(11):4657–4661. [PubMed] [Google Scholar]
  27. MacDonald M. L., Augustine S. L., Burk T. L., Swick R. W. A comparison of methods for the measurement of protein turnover in vivo. Biochem J. 1979 Nov 15;184(2):473–476. doi: 10.1042/bj1840473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Maltin C. A., Delday M. I., Reeds P. J. The effect of a growth promoting drug, clenbuterol, on fibre frequency and area in hind limb muscles from young male rats. Biosci Rep. 1986 Mar;6(3):293–299. doi: 10.1007/BF01115158. [DOI] [PubMed] [Google Scholar]
  29. Maltin C. A., Hay S. M., Delday M. I., Reeds P. J., Palmer R. M. Evidence that the hypertrophic action of clenbuterol on denervated rat muscle is not propranolol-sensitive. Br J Pharmacol. 1989 Apr;96(4):817–822. doi: 10.1111/j.1476-5381.1989.tb11889.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Maltin C. A., Reeds P. J., Delday M. I., Hay S. M., Smith F. G., Lobley G. E. Inhibition and reversal of denervation-induced atrophy by the beta-agonist growth promoter, clenbuterol. Biosci Rep. 1986 Sep;6(9):811–818. doi: 10.1007/BF01117104. [DOI] [PubMed] [Google Scholar]
  31. Melville S., McNurlan M. A., Calder A. G., Garlick P. J. Increased protein turnover despite normal energy metabolism and responses to feeding in patients with lung cancer. Cancer Res. 1990 Feb 15;50(4):1125–1131. [PubMed] [Google Scholar]
  32. Moley J. F., Morrison S. D., Gorschboth C. M., Norton J. A. Body composition changes in rats with experimental cancer cachexia: improvement with exogenous insulin. Cancer Res. 1988 May 15;48(10):2784–2787. [PubMed] [Google Scholar]
  33. Pain V. M., Randall D. P., Garlick P. J. Protein synthesis in liver and skeletal muscle of mice bearing an ascites tumor. Cancer Res. 1984 Mar;44(3):1054–1057. [PubMed] [Google Scholar]
  34. Popp M. B., Wagner S. C., Enrione E. B., Brito O. J. Host and tumor responses to varying rates of nitrogen infusion in the tumor-bearing rat. Ann Surg. 1988 Jan;207(1):80–89. doi: 10.1097/00000658-198801000-00016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Portillo M. P., Martinez J. A., Larralde J. Modifications homéorhétiques produites par un beta-agoniste dans les tissus musculaires et adipeux chez le rat. Reprod Nutr Dev. 1991;31(5):509–519. [PubMed] [Google Scholar]
  36. Reeds P. J., Hay S. M., Dorwood P. M., Palmer R. M. Stimulation of muscle growth by clenbuterol: lack of effect on muscle protein biosynthesis. Br J Nutr. 1986 Jul;56(1):249–258. doi: 10.1079/bjn19860104. [DOI] [PubMed] [Google Scholar]
  37. Rguez-Mariscal M., Del Barrio A. S., Larralde J., Martínez J. A. Free intracellular and protein bound amino acids in tissues as affected by a mixed beta-adrenergic agonist. Experientia. 1993 Apr 15;49(4):308–312. doi: 10.1007/BF01923408. [DOI] [PubMed] [Google Scholar]
  38. Rothwell N. J., Stock M. J. Increased body-weight gain and body protein in castrated and adrenalectomized rats treated with clenbuterol. Br J Nutr. 1988 Sep;60(2):355–360. doi: 10.1079/bjn19880105. [DOI] [PubMed] [Google Scholar]
  39. Rothwell N. J., Stock M. J. Modification of body composition by clenbuterol in normal and dystrophic (mdx) mice. Biosci Rep. 1985 Sep;5(9):755–760. doi: 10.1007/BF01119873. [DOI] [PubMed] [Google Scholar]
  40. Scheidegger K., Robbins D. C., Danforth E., Jr Effects of chronic beta receptor stimulation on glucose metabolism. Diabetes. 1984 Dec;33(12):1144–1149. doi: 10.2337/diab.33.12.1144. [DOI] [PubMed] [Google Scholar]
  41. Shaw J. H., Wolfe R. R. Whole-body protein kinetics in patients with early and advanced gastrointestinal cancer: the response to glucose infusion and total parenteral nutrition. Surgery. 1988 Feb;103(2):148–155. [PubMed] [Google Scholar]
  42. Swick R. W., Ip M. M. Measurement of protein turnover in rat liver with (14C)carbonate. Protein turnover during liver regeneration. J Biol Chem. 1974 Nov 10;249(21):6836–6841. [PubMed] [Google Scholar]
  43. Tayek J. A., Istfan N. W., Jones C. T., Hamawy K. J., Bistrian B. R., Blackburn G. L. Influence of the Walker 256 carcinosarcoma on muscle, tumor, and whole-body protein synthesis and growth rate in the cancer-bearing rat. Cancer Res. 1986 Nov;46(11):5649–5654. [PubMed] [Google Scholar]
  44. Tessitore L., Bonelli G., Baccino F. M. Early development of protein metabolic perturbations in the liver and skeletal muscle of tumour-bearing rats. A model system for cancer cachexia. Biochem J. 1987 Jan 1;241(1):153–159. doi: 10.1042/bj2410153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tessitore L., Bonelli G., Cecchini G., Amenta J. S., Baccino F. M. Regulation of protein turnover versus growth state: ascites hepatoma as a model for studies both in the animal and in vitro. Arch Biochem Biophys. 1987 Jun;255(2):372–384. doi: 10.1016/0003-9861(87)90405-x. [DOI] [PubMed] [Google Scholar]
  46. Tessitore L., Bonelli G., Isidoro C., Kazakova O. V., Baccino F. M. Comparative studies on protein turnover regulations in tumor cells and host tissues: development and analysis of an experimental model. Toxicol Pathol. 1986;14(4):451–456. doi: 10.1177/019262338601400411. [DOI] [PubMed] [Google Scholar]
  47. Tessitore L., Costelli P., Baccino F. M. Humoral mediation for cachexia in tumour-bearing rats. Br J Cancer. 1993 Jan;67(1):15–23. doi: 10.1038/bjc.1993.4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tessitore L., Costelli P., Baccino F. M. Pharmacological interference with tissue hypercatabolism in tumour-bearing rats. Biochem J. 1994 Apr 1;299(Pt 1):71–78. doi: 10.1042/bj2990071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tessitore L., Costelli P., Bonetti G., Baccino F. M. Cancer cachexia, malnutrition, and tissue protein turnover in experimental animals. Arch Biochem Biophys. 1993 Oct;306(1):52–58. doi: 10.1006/abbi.1993.1479. [DOI] [PubMed] [Google Scholar]
  50. Tisdale M. J. Cancer cachexia. Br J Cancer. 1991 Mar;63(3):337–342. doi: 10.1038/bjc.1991.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wing S. S., Goldberg A. L. Glucocorticoids activate the ATP-ubiquitin-dependent proteolytic system in skeletal muscle during fasting. Am J Physiol. 1993 Apr;264(4 Pt 1):E668–E676. doi: 10.1152/ajpendo.1993.264.4.E668. [DOI] [PubMed] [Google Scholar]
  52. Yang Y. T., McElligott M. A. Multiple actions of beta-adrenergic agonists on skeletal muscle and adipose tissue. Biochem J. 1989 Jul 1;261(1):1–10. doi: 10.1042/bj2610001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Zeman R. J., Ludemann R., Easton T. G., Etlinger J. D. Slow to fast alterations in skeletal muscle fibers caused by clenbuterol, a beta 2-receptor agonist. Am J Physiol. 1988 Jun;254(6 Pt 1):E726–E732. doi: 10.1152/ajpendo.1988.254.6.E726. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES