Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 May;95(5):2385–2390. doi: 10.1172/JCI117932

All-trans-retinoic acid stimulates synthesis of cyclic ADP-ribose in renal LLC-PK1 cells.

K W Beers 1, E N Chini 1, T P Dousa 1
PMCID: PMC295865  PMID: 7537765

Abstract

Cyclic adenosine diphospho-ribose (cADPR) triggers Ca2+ release from intracellular stores and is therefore proposed to function as a second messenger in cellular signaling; however, an extracellular stimulus, i.e., first messenger (hormone or autacoid) that modulates cADPR metabolism has not been identified. We discovered that all-trans-retinoic acid (atRA) is a potent stimulus to increase cADPR synthesis by cultured LLC-PK1 cells. The stimulation of cADPR synthesis by atRA is dose dependent between 0.1 nM and 1 microM (maximum increase approximately delta + 600%), while atRA does not alter the rate of cADPR hydrolysis by LLC-PK1 cells. The activity of other intrinsic apical membrane enzymes was not significantly altered. The stimulation of cADPR synthesis by atRA occurs after a lag period of 6-8 h, and the stimulation is inhibited by actinomycin D and by cycloheximide. Our results therefore demonstrate that atRA in physiological concentrations is a potent extracellular stimulus, first messenger, that enhances cADPR synthesis, and the effect of atRA requires de novo protein synthesis. We suggest that some of the diverse biologic actions of atRA such as morphogenetic and cell differentiation may be mediated via cADPR.

Full text

PDF
2385

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argilés A., Kraft N. E., Hutchinson P., Senes-Ferrari S., Atkins R. C. Retinoic acid affects the cell cycle and increases total protein content in epithelial cells. Kidney Int. 1989 Dec;36(6):954–959. doi: 10.1038/ki.1989.287. [DOI] [PubMed] [Google Scholar]
  2. Ausiello D. A., Hall D. H., Dayer J. M. Modulation of cyclic AMP-dependent protein kinase by vasopressin and calcitonin in cultured porcine renal LLC-PK1 cells. Biochem J. 1980 Mar 15;186(3):773–780. doi: 10.1042/bj1860773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clapper D. L., Walseth T. F., Dargie P. J., Lee H. C. Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J Biol Chem. 1987 Jul 15;262(20):9561–9568. [PubMed] [Google Scholar]
  4. Galione A., Lee H. C., Busa W. B. Ca(2+)-induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science. 1991 Sep 6;253(5024):1143–1146. doi: 10.1126/science.1909457. [DOI] [PubMed] [Google Scholar]
  5. Giguère V. Retinoic acid receptors and cellular retinoid binding proteins: complex interplay in retinoid signaling. Endocr Rev. 1994 Feb;15(1):61–79. doi: 10.1210/edrv-15-1-61. [DOI] [PubMed] [Google Scholar]
  6. Hemmi H., Breitman T. R. Induction by retinoic acid of NAD+-glycohydrolase activity of myelomonocytic cell lines HL-60, THP-1 and U-937, and fresh human acute promyelocytic leukemia cells in primary culture. Biochem Biophys Res Commun. 1982 Dec 15;109(3):669–674. doi: 10.1016/0006-291x(82)91992-1. [DOI] [PubMed] [Google Scholar]
  7. Hoppe A., Lin J. T., Onsgard M., Knox F. G., Dousa T. P. Quantitation of the Na(+)-Pi cotransporter in renal cortical brush border membranes. [14C]phosphonoformic acid as a useful probe to determine the density and its change in response to parathyroid hormone. J Biol Chem. 1991 Jun 25;266(18):11528–11536. [PubMed] [Google Scholar]
  8. Howard M., Grimaldi J. C., Bazan J. F., Lund F. E., Santos-Argumedo L., Parkhouse R. M., Walseth T. F., Lee H. C. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science. 1993 Nov 12;262(5136):1056–1059. doi: 10.1126/science.8235624. [DOI] [PubMed] [Google Scholar]
  9. Humes H. D., Cieslinski D. A. Interaction between growth factors and retinoic acid in the induction of kidney tubulogenesis in tissue culture. Exp Cell Res. 1992 Jul;201(1):8–15. doi: 10.1016/0014-4827(92)90342-6. [DOI] [PubMed] [Google Scholar]
  10. Kempson S. A. NAD-glycohydrolase in renal brush border membranes. Am J Physiol. 1985 Sep;249(3 Pt 2):F366–F373. doi: 10.1152/ajprenal.1985.249.3.F366. [DOI] [PubMed] [Google Scholar]
  11. Kim H., Jacobson E. L., Jacobson M. K. Synthesis and degradation of cyclic ADP-ribose by NAD glycohydrolases. Science. 1993 Sep 3;261(5126):1330–1333. doi: 10.1126/science.8395705. [DOI] [PubMed] [Google Scholar]
  12. Kontani K., Nishina H., Ohoka Y., Takahashi K., Katada T. NAD glycohydrolase specifically induced by retinoic acid in human leukemic HL-60 cells. Identification of the NAD glycohydrolase as leukocyte cell surface antigen CD38. J Biol Chem. 1993 Aug 15;268(23):16895–16898. [PubMed] [Google Scholar]
  13. Koshiyama H., Lee H. C., Tashjian A. H., Jr Novel mechanism of intracellular calcium release in pituitary cells. J Biol Chem. 1991 Sep 15;266(26):16985–16988. [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Lee H. C., Aarhus R. Wide distribution of an enzyme that catalyzes the hydrolysis of cyclic ADP-ribose. Biochim Biophys Acta. 1993 Jun 24;1164(1):68–74. doi: 10.1016/0167-4838(93)90113-6. [DOI] [PubMed] [Google Scholar]
  16. Lee H. C. Potentiation of calcium- and caffeine-induced calcium release by cyclic ADP-ribose. J Biol Chem. 1993 Jan 5;268(1):293–299. [PubMed] [Google Scholar]
  17. Lee H. C., Zocchi E., Guida L., Franco L., Benatti U., De Flora A. Production and hydrolysis of cyclic ADP-ribose at the outer surface of human erythrocytes. Biochem Biophys Res Commun. 1993 Mar 15;191(2):639–645. doi: 10.1006/bbrc.1993.1265. [DOI] [PubMed] [Google Scholar]
  18. Mantzouris N. M., Kaplan J., Clark G., Hise M. K. Regulation of epidermal growth factor receptor expression and growth by protein kinase C and retinoic acid in LLC-PK1 cells. Am J Kidney Dis. 1993 Dec;22(6):858–864. doi: 10.1016/s0272-6386(12)70346-3. [DOI] [PubMed] [Google Scholar]
  19. Muller H. M., Muller C. D., Schuber F. NAD+ glycohydrolase, an ecto-enzyme of calf spleen cells. Biochem J. 1983 May 15;212(2):459–464. doi: 10.1042/bj2120459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Napoli J. L. Retinol metabolism in LLC-PK1 Cells. Characterization of retinoic acid synthesis by an established mammalian cell line. J Biol Chem. 1986 Oct 15;261(29):13592–13597. [PubMed] [Google Scholar]
  21. Rusinko N., Lee H. C. Widespread occurrence in animal tissues of an enzyme catalyzing the conversion of NAD+ into a cyclic metabolite with intracellular Ca2+-mobilizing activity. J Biol Chem. 1989 Jul 15;264(20):11725–11731. [PubMed] [Google Scholar]
  22. Takasawa S., Nata K., Yonekura H., Okamoto H. Cyclic ADP-ribose in insulin secretion from pancreatic beta cells. Science. 1993 Jan 15;259(5093):370–373. doi: 10.1126/science.8420005. [DOI] [PubMed] [Google Scholar]
  23. Yamada M., Moritoh C., Kawaguchi M., Okigaki T. Growth, morphology, function, and morphogenetic properties of rat renal glomerular epithelial cells in vitro: effects of retinyl acetate. Eur J Cell Biol. 1989 Aug;49(2):252–258. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES