Abstract
Elevations in extracellular [Mg2+] ([Mg2+]o) relax vascular smooth muscle. We tested the hypothesis that elevated [Mg2+]o induces relaxation through reductions in myoplasmic [Ca2+] and myosin light chain phosphorylation without changing intracellular [Mg2+] ([Mg2+]i). Histamine stimulation of endothelium-free swine carotid medial tissues was associated with increases in both Fura 2- and aequorin-estimated myoplasmic [Ca2+], myosin phosphorylation, and force. Elevated [Mg2+]o decreased myoplasmic [Ca2+] and force to near resting values. However, elevated [Mg2+]o only transiently decreased myosin phosphorylation values: sustained [Mg2+]o-induced decreases in myoplasmic [Ca2+] and force were associated with inappropriately high myosin phosphorylation values. The elevated myosin phosphorylation during [Mg2+]o-induced relaxation was entirely on serine 19, the Ca2+/calmodulin-dependent myosin light chain kinase substrate. Myoplasmic [Mg2+] (estimated with Mag-Fura 2) did not significantly increase with elevated [Mg2+]o. These results are consistent with the hypothesis that increased [Mg2+]o induces relaxation by decreasing myoplasmic [Ca2+] without changing [Mg2+]i. These data also demonstrate dissociation of myosin phosphorylation from myoplasmic [Ca2+] and force during Mg(2+)-induced relaxation. This finding suggests the presence of a phosphorylation-independent (yet potentially Ca(2+)-dependent) mechanism for regulation of force in vascular smooth muscle.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adelstein R. S., Conti M. A., Hathaway D. R., Klee C. B. Phosphorylation of smooth muscle myosin light chain kinase by the catalytic subunit of adenosine 3': 5'-monophosphate-dependent protein kinase. J Biol Chem. 1978 Dec 10;253(23):8347–8350. [PubMed] [Google Scholar]
- Aksoy M. O., Mras S., Kamm K. E., Murphy R. A. Ca2+, cAMP, and changes in myosin phosphorylation during contraction of smooth muscle. Am J Physiol. 1983 Sep;245(3):C255–C270. doi: 10.1152/ajpcell.1983.245.3.C255. [DOI] [PubMed] [Google Scholar]
- Altura B. M., Altura B. T., Gebrewold A., Ising H., Günther T. Magnesium deficiency and hypertension: correlation between magnesium-deficient diets and microcirculatory changes in situ. Science. 1984 Mar 23;223(4642):1315–1317. doi: 10.1126/science.6701524. [DOI] [PubMed] [Google Scholar]
- Barsotti R. J., Ikebe M., Hartshorne D. J. Effects of Ca2+, Mg2+, and myosin phosphorylation on skinned smooth muscle fibers. Am J Physiol. 1987 May;252(5 Pt 1):C543–C554. doi: 10.1152/ajpcell.1987.252.5.C543. [DOI] [PubMed] [Google Scholar]
- Bengur A. R., Robinson E. A., Appella E., Sellers J. R. Sequence of the sites phosphorylated by protein kinase C in the smooth muscle myosin light chain. J Biol Chem. 1987 Jun 5;262(16):7613–7617. [PubMed] [Google Scholar]
- Blinks J. R., Wier W. G., Hess P., Prendergast F. G. Measurement of Ca2+ concentrations in living cells. Prog Biophys Mol Biol. 1982;40(1-2):1–114. doi: 10.1016/0079-6107(82)90011-6. [DOI] [PubMed] [Google Scholar]
- Colburn J. C., Michnoff C. H., Hsu L. C., Slaughter C. A., Kamm K. E., Stull J. T. Sites phosphorylated in myosin light chain in contracting smooth muscle. J Biol Chem. 1988 Dec 15;263(35):19166–19173. [PubMed] [Google Scholar]
- Driska S. P., Aksoy M. O., Murphy R. A. Myosin light chain phosphorylation associated with contraction in arterial smooth muscle. Am J Physiol. 1981 May;240(5):C222–C233. doi: 10.1152/ajpcell.1981.240.5.C222. [DOI] [PubMed] [Google Scholar]
- Dyckner T., Wester P. O. Effect of magnesium on blood pressure. Br Med J (Clin Res Ed) 1983 Jun 11;286(6381):1847–1849. doi: 10.1136/bmj.286.6381.1847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilbert E. K., Weaver B. A., Rembold C. M. Depolarization decreases the [Ca2+]i sensitivity of myosin light-chain kinase in arterial smooth muscle: comparison of aequorin and fura 2 [Ca2+]i estimates. FASEB J. 1991 Aug;5(11):2593–2599. doi: 10.1096/fasebj.5.11.1868983. [DOI] [PubMed] [Google Scholar]
- Gold M. E., Buga G. M., Wood K. S., Byrns R. E., Chaudhuri G., Ignarro L. J. Antagonistic modulatory roles of magnesium and calcium on release of endothelium-derived relaxing factor and smooth muscle tone. Circ Res. 1990 Feb;66(2):355–366. doi: 10.1161/01.res.66.2.355. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Hai C. M., Murphy R. A. Ca2+, crossbridge phosphorylation, and contraction. Annu Rev Physiol. 1989;51:285–298. doi: 10.1146/annurev.ph.51.030189.001441. [DOI] [PubMed] [Google Scholar]
- Himpens B., Somlyo A. P. Free-calcium and force transients during depolarization and pharmacomechanical coupling in guinea-pig smooth muscle. J Physiol. 1988 Jan;395:507–530. doi: 10.1113/jphysiol.1988.sp016932. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howell R. E., Carrier G. O. Influence of magnesium on norepinephrine-and histamine-induced contractions of pulmonary vascular smooth muscle. Pharmacology. 1986;33(1):27–33. doi: 10.1159/000138196. [DOI] [PubMed] [Google Scholar]
- Ikebe M., Barsotti R. J., Hinkins S., Hartshorne D. J. Effects of magnesium chloride on smooth muscle actomyosin adenosine-5'-triphosphatase activity, myosin conformation, and tension development in glycerinated smooth muscle fibers. Biochemistry. 1984 Oct 9;23(21):5062–5068. doi: 10.1021/bi00316a036. [DOI] [PubMed] [Google Scholar]
- Ito M., Hartshorne D. J. Phosphorylation of myosin as a regulatory mechanism in smooth muscle. Prog Clin Biol Res. 1990;327:57–72. [PubMed] [Google Scholar]
- Kamm K. E., Stull J. T. Regulation of smooth muscle contractile elements by second messengers. Annu Rev Physiol. 1989;51:299–313. doi: 10.1146/annurev.ph.51.030189.001503. [DOI] [PubMed] [Google Scholar]
- Karaki H. Magnesium as a modifier of smooth muscle contractility. Microcirc Endothelium Lymphatics. 1989 Feb-Apr;5(1-2):77–97. [PubMed] [Google Scholar]
- Kitazawa T., Gaylinn B. D., Denney G. H., Somlyo A. P. G-protein-mediated Ca2+ sensitization of smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem. 1991 Jan 25;266(3):1708–1715. [PubMed] [Google Scholar]
- Kitazawa T., Somlyo A. P. Desensitization and muscarinic re-sensitization of force and myosin light chain phosphorylation to cytoplasmic Ca2+ in smooth muscle. Biochem Biophys Res Commun. 1990 Nov 15;172(3):1291–1297. doi: 10.1016/0006-291x(90)91589-k. [DOI] [PubMed] [Google Scholar]
- Kubota Y., Nomura M., Kamm K. E., Mumby M. C., Stull J. T. GTP gamma S-dependent regulation of smooth muscle contractile elements. Am J Physiol. 1992 Feb;262(2 Pt 1):C405–C410. doi: 10.1152/ajpcell.1992.262.2.C405. [DOI] [PubMed] [Google Scholar]
- Kushmerick M. J., Dillon P. F., Meyer R. A., Brown T. R., Krisanda J. M., Sweeney H. L. 31P NMR spectroscopy, chemical analysis, and free Mg2+ of rabbit bladder and uterine smooth muscle. J Biol Chem. 1986 Nov 5;261(31):14420–14429. [PubMed] [Google Scholar]
- McDaniel N. L., Rembold C. M., Richard H. M., Murphy R. A. Cyclic AMP relaxes swine arterial smooth muscle predominantly by decreasing cell Ca2+ concentration. J Physiol. 1991 Aug;439:147–160. doi: 10.1113/jphysiol.1991.sp018661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore E. D., Becker P. L., Fogarty K. E., Williams D. A., Fay F. S. Ca2+ imaging in single living cells: theoretical and practical issues. Cell Calcium. 1990 Feb-Mar;11(2-3):157–179. doi: 10.1016/0143-4160(90)90068-6. [DOI] [PubMed] [Google Scholar]
- Moreland R. S., Moreland S. Characterization of magnesium-induced contractions in detergent-skinned swine carotid media. Am J Physiol. 1991 Jun;260(6 Pt 1):C1224–C1232. doi: 10.1152/ajpcell.1991.260.6.C1224. [DOI] [PubMed] [Google Scholar]
- Ngai P. K., Walsh M. P. Inhibition of smooth muscle actin-activated myosin Mg2+-ATPase activity by caldesmon. J Biol Chem. 1984 Nov 25;259(22):13656–13659. [PubMed] [Google Scholar]
- Nishimura J., Kolber M., van Breemen C. Norepinephrine and GTP-gamma-S increase myofilament Ca2+ sensitivity in alpha-toxin permeabilized arterial smooth muscle. Biochem Biophys Res Commun. 1988 Dec 15;157(2):677–683. doi: 10.1016/s0006-291x(88)80303-6. [DOI] [PubMed] [Google Scholar]
- Owen C. S., Sykes N. L., Shuler R. L., Ost D. Non-calcium environmental sensitivity of intracellular Indo-1. Anal Biochem. 1991 Jan;192(1):142–148. doi: 10.1016/0003-2697(91)90199-4. [DOI] [PubMed] [Google Scholar]
- Paul R. J., Rüegg J. C. Role of magnesium in activation of smooth muscle. Am J Physiol. 1988 Oct;255(4 Pt 1):C465–C472. doi: 10.1152/ajpcell.1988.255.4.C465. [DOI] [PubMed] [Google Scholar]
- Pritchard J. A., Cunningham F. G., Pritchard S. A. The Parkland Memorial Hospital protocol for treatment of eclampsia: evaluation of 245 cases. Am J Obstet Gynecol. 1984 Apr 1;148(7):951–963. doi: 10.1016/0002-9378(84)90538-6. [DOI] [PubMed] [Google Scholar]
- Rasmussen H. S., McNair P., Norregard P., Backer V., Lindeneg O., Balslev S. Intravenous magnesium in acute myocardial infarction. Lancet. 1986 Feb 1;1(8475):234–236. doi: 10.1016/s0140-6736(86)90773-7. [DOI] [PubMed] [Google Scholar]
- Rembold C. M. Modulation of the [Ca2+] sensitivity of myosin phosphorylation in intact swine arterial smooth muscle. J Physiol. 1990 Oct;429:77–94. doi: 10.1113/jphysiol.1990.sp018245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rembold C. M., Murphy R. A. Myoplasmic [Ca2+] determines myosin phosphorylation in agonist-stimulated swine arterial smooth muscle. Circ Res. 1988 Sep;63(3):593–603. doi: 10.1161/01.res.63.3.593. [DOI] [PubMed] [Google Scholar]
- Rembold C. M., Murphy R. A. [Ca2+]-dependent myosin phosphorylation in phorbol diester stimulated smooth muscle contraction. Am J Physiol. 1988 Dec;255(6 Pt 1):C719–C723. doi: 10.1152/ajpcell.1988.255.6.C719. [DOI] [PubMed] [Google Scholar]
- Roe M. W., Lemasters J. J., Herman B. Assessment of Fura-2 for measurements of cytosolic free calcium. Cell Calcium. 1990 Feb-Mar;11(2-3):63–73. doi: 10.1016/0143-4160(90)90060-8. [DOI] [PubMed] [Google Scholar]
- Schachter M., Gallagher K. L., Sever P. S. Measurement of intracellular magnesium in a vascular smooth muscle cell line using a fluorescent probe. Biochim Biophys Acta. 1990 Sep 14;1035(3):378–380. doi: 10.1016/0304-4165(90)90103-4. [DOI] [PubMed] [Google Scholar]
- Singer H. A., Oren J. W., Benscoter H. A. Myosin light chain phosphorylation in 32P-labeled rabbit aorta stimulated by phorbol 12,13-dibutyrate and phenylephrine. J Biol Chem. 1989 Dec 15;264(35):21215–21222. [PubMed] [Google Scholar]
- Singer H. A. Protein kinase C activation and myosin light chain phosphorylation in 32P-labeled arterial smooth muscle. Am J Physiol. 1990 Oct;259(4 Pt 1):C631–C639. doi: 10.1152/ajpcell.1990.259.4.C631. [DOI] [PubMed] [Google Scholar]
- Sjögren A., Edvinsson L. The influence of magnesium on the release of calcium from intracellular depots in vascular smooth muscle cells. Pharmacol Toxicol. 1988 Jan;62(1):17–21. doi: 10.1111/j.1600-0773.1988.tb01837.x. [DOI] [PubMed] [Google Scholar]
- Stull J. T., Hsu L. C., Tansey M. G., Kamm K. E. Myosin light chain kinase phosphorylation in tracheal smooth muscle. J Biol Chem. 1990 Sep 25;265(27):16683–16690. [PubMed] [Google Scholar]
- Tsunekawa S., Takahashi K., Abe M., Hiwada K., Ozawa K., Murachi T. Calpain proteolysis of free and bound forms of calponin, a troponin T-like protein in smooth muscle. FEBS Lett. 1989 Jul 3;250(2):493–496. doi: 10.1016/0014-5793(89)80783-5. [DOI] [PubMed] [Google Scholar]
- Wasserman A. J., McClellan G., Somlyo A. P. Calcium-sensitive cellular and subcellular transport of sodium, potassium, magnesium, and calcium in sodium-loaded vascular smooth muscle. Electron probe analysis. Circ Res. 1986 Jun;58(6):790–802. doi: 10.1161/01.res.58.6.790. [DOI] [PubMed] [Google Scholar]