Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 24;64(Pt 10):o2004. doi: 10.1107/S1600536808030389

Ethyl 2-phenyl-5-trifluoro­methyl-1,3-thia­zole-4-carboxyl­ate

Hai-Zhen Jiang a, Wen Wan a, Min Shao b, Jian Hao a,c,*
PMCID: PMC2959226  PMID: 21201202

Abstract

In the title compound, C13H10F3NO2S, the dihedral angle between the thia­zole and phenyl rings is 5.15 (1)°. No inter­molecular hydrogen bonding is observed in the crystal structure.

Related literature

For general backgroud, see: Sasse et al. (2002); Campeau et al. (2008); Zificsak & Hlasta (2004); Rynbrandt et al. (1981). For a related structure, see: Kennedy et al. (2004).graphic file with name e-64-o2004-scheme1.jpg

Experimental

Crystal data

  • C13H10F3NO2S

  • M r = 301.28

  • Monoclinic, Inline graphic

  • a = 8.930 (3) Å

  • b = 21.232 (6) Å

  • c = 7.574 (2) Å

  • β = 110.861 (4)°

  • V = 1342.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 296 (2) K

  • 0.30 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.922, T max = 0.973

  • 6891 measured reflections

  • 2367 independent reflections

  • 1417 reflections with I > 2σ(I)

  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.142

  • S = 1.01

  • 2367 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808030389/xu2454sup1.cif

e-64-o2004-sup1.cif (16.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030389/xu2454Isup2.hkl

e-64-o2004-Isup2.hkl (116.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for financial support from the Natural Science Foundation of China (No. 20772079) and the Science Foundation of Shanghai Municipal Commission of Sciences and Technology (07JC14020, 07ZR14040), and for structural analysis by the Instrumental Analysis & Research Center of Shanghai University.

supplementary crystallographic information

Comment

1,3-Thiazole derivatives have attracted considerable attention because of various biological activities (Sasse et al., 2002) and have broad applications in the materials science (Campeau et al., 2008). Thiazole can be used as a core for developing pharmaceutically important molecules (Zificsak & Hlasta, 2004). Trifluoromethyl substituted thiazole may be the most promising skeleton in medicinal chemistry (Rynbrandt et al., 1981). The title compound, multiple substitute 1,3-thiazol with trifluoromethyl group at 5-position, has been obtained unexpectedly in the laboratory during trying to prepare 3-chloro-2-dibenzylamino-4,4,4-trifluoro-butyric acid ethyl ester by a reaction of 2-dibenzylamino-4,4,4-trifluoro-3-hydroxy-butyric acid ethyl ester with thionyl chloride. We present here the crystal structure of the title compound.

The molecular structure is shown in Fig. 1. The bond lengths in the thiazole moiety agree with those found in methyl 2-amino-5-isopropyl-1,3-thiazole-4-carboxylate (Kennedy et al., 2004). The thiazole ring makes a dihedral angle of 5.15 (1)° with phenyl ring, showing the approximately coplanar molecular structure except for trifluoromethyl and ethoxy group. No intermolecular hydrogen bonding is observed in the crystal structure.

Experimental

A solution of 2-dibenzylamino-4, 4, 4-trifluoro-3-hydroxy-butyric acid ethyl ester (0.2 mmol) in 10 ml thionyl chloride was refluxed for a period of half an hour till the complete consumption of raw material. Excess thionyl chloride was evaporated, the residue was diluted with anhydrous ethanol (4 ml), then concentrated by rotary evaporator. The crude product was re-crystallized from ethanol (95%) and colorless needle-type crystals of (I) were obtained.

Refinement

All the H atoms were placed in geometrically idealized positions and constrained to ride their parent atoms, with C—H = 0.93 - 0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for others.

Figures

Fig. 1.

Fig. 1.

View of the title compound (I), shown the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by circles of arbitrary radii.

Crystal data

C13H10F3NO2S F(000) = 616
Mr = 301.28 Dx = 1.491 Mg m3
Monoclinic, P21/c Melting point: 320 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 8.930 (3) Å Cell parameters from 1005 reflections
b = 21.232 (6) Å θ = 2.5–19.0°
c = 7.574 (2) Å µ = 0.28 mm1
β = 110.861 (4)° T = 296 K
V = 1342.0 (7) Å3 Needle, colorless
Z = 4 0.30 × 0.10 × 0.10 mm

Data collection

Bruker SMART CCD area-detector diffractometer 2367 independent reflections
Radiation source: fine-focus sealed tube 1417 reflections with I > 2σ(I)
graphite Rint = 0.050
φ and ω scans θmax = 25.1°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.922, Tmax = 0.973 k = −25→19
6891 measured reflections l = −8→8

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0642P)2] where P = (Fo2 + 2Fc2)/3
2367 reflections (Δ/σ)max = 0.001
182 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Experimental. IR (KBr, cm-1): 3061, 2980, 1737, 1633, 1513, 1461, 1290, 1210, 766, 689. 1H NMR (CDCl3, 500 MHz). δ/p.p.m.: 7.46–8.00 (m, 5H), 4.49 (q, J = 7.0 Hz, 2H), 1.44 (t, J = 7.0 Hz, 3H). 13C NMR (CDCl3, 125 MHz). δ/p.p.m.: 168.87, 160.27, 146.48, 131.77, 131.63, 129.24, 164.15 (q, 2JC—F = 36.5 Hz, CF3C–), 123.33 (q, 1JC—F = 269.3 Hz, –CF3), 62.41, 13.98. 19F NMR (CDCl3, 470 MHz, CFCl3). δ/p.p.m.: -52.44 (s).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.22302 (11) 0.67958 (4) 0.44789 (13) 0.0585 (3)
C1 0.1690 (4) 0.75511 (15) 0.3693 (5) 0.0504 (8)
C2 0.2697 (4) 0.80979 (15) 0.4545 (5) 0.0523 (8)
C3 0.4186 (4) 0.80233 (17) 0.5954 (5) 0.0615 (10)
H3 0.4559 0.7622 0.6376 0.074*
C4 0.5115 (4) 0.85408 (19) 0.6732 (5) 0.0681 (10)
H4 0.6116 0.8488 0.7671 0.082*
C5 0.4564 (5) 0.91329 (18) 0.6123 (6) 0.0720 (11)
H5 0.5192 0.9483 0.6646 0.086*
C6 0.3083 (5) 0.92108 (18) 0.4743 (6) 0.0741 (11)
H6 0.2708 0.9614 0.4343 0.089*
C7 0.2154 (4) 0.86972 (16) 0.3947 (5) 0.0642 (10)
H7 0.1156 0.8753 0.3004 0.077*
C8 −0.0328 (4) 0.70143 (16) 0.1739 (5) 0.0514 (8)
C9 0.0515 (4) 0.65213 (16) 0.2791 (5) 0.0517 (8)
C10 0.0138 (5) 0.58379 (17) 0.2771 (6) 0.0674 (10)
C11 −0.1837 (4) 0.69976 (18) 0.0062 (5) 0.0577 (9)
C12 −0.3482 (5) 0.63721 (19) −0.2455 (6) 0.0857 (13)
H12A −0.3442 0.6683 −0.3375 0.103*
H12B −0.4455 0.6438 −0.2188 0.103*
C13 −0.3463 (7) 0.5732 (2) −0.3197 (7) 0.133 (2)
H13A −0.2565 0.5689 −0.3603 0.200*
H13B −0.4438 0.5660 −0.4249 0.200*
H13C −0.3375 0.5429 −0.2224 0.200*
F1 −0.1303 (3) 0.57367 (10) 0.2825 (4) 0.0973 (8)
F2 0.0198 (3) 0.55287 (10) 0.1294 (4) 0.0932 (8)
F3 0.1174 (3) 0.55518 (10) 0.4280 (4) 0.1071 (9)
N1 0.0337 (3) 0.75955 (12) 0.2277 (4) 0.0522 (7)
O1 −0.2677 (3) 0.74436 (12) −0.0528 (4) 0.0791 (8)
O2 −0.2081 (3) 0.64335 (11) −0.0726 (3) 0.0693 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0601 (6) 0.0546 (6) 0.0597 (6) 0.0055 (4) 0.0201 (5) 0.0032 (4)
C1 0.053 (2) 0.054 (2) 0.053 (2) 0.0023 (16) 0.0291 (19) 0.0011 (16)
C2 0.058 (2) 0.055 (2) 0.049 (2) 0.0007 (17) 0.0249 (18) −0.0021 (17)
C3 0.060 (2) 0.057 (2) 0.069 (3) 0.0017 (18) 0.024 (2) 0.0034 (18)
C4 0.058 (2) 0.075 (3) 0.066 (3) −0.007 (2) 0.016 (2) −0.003 (2)
C5 0.074 (3) 0.058 (3) 0.086 (3) −0.010 (2) 0.030 (2) −0.010 (2)
C6 0.073 (3) 0.057 (2) 0.089 (3) 0.004 (2) 0.024 (2) −0.005 (2)
C7 0.063 (2) 0.054 (2) 0.070 (3) 0.0019 (18) 0.015 (2) −0.0032 (18)
C8 0.053 (2) 0.049 (2) 0.057 (2) 0.0039 (16) 0.0256 (19) −0.0011 (17)
C9 0.0499 (19) 0.054 (2) 0.057 (2) 0.0036 (16) 0.0259 (17) −0.0019 (17)
C10 0.070 (3) 0.054 (2) 0.076 (3) 0.0024 (19) 0.022 (2) 0.003 (2)
C11 0.056 (2) 0.056 (2) 0.063 (2) 0.0018 (18) 0.023 (2) 0.0041 (19)
C12 0.084 (3) 0.079 (3) 0.073 (3) −0.004 (2) 0.003 (2) −0.001 (2)
C13 0.172 (5) 0.076 (4) 0.103 (4) 0.002 (3) −0.012 (4) −0.012 (3)
F1 0.0903 (17) 0.0681 (15) 0.149 (2) −0.0148 (12) 0.0613 (17) 0.0074 (14)
F2 0.118 (2) 0.0605 (14) 0.109 (2) 0.0018 (12) 0.0492 (16) −0.0211 (13)
F3 0.123 (2) 0.0591 (15) 0.108 (2) 0.0033 (13) 0.0028 (17) 0.0185 (13)
N1 0.0500 (18) 0.0519 (18) 0.0575 (18) 0.0012 (13) 0.0227 (16) 0.0024 (13)
O1 0.0707 (18) 0.0663 (18) 0.083 (2) 0.0126 (14) 0.0060 (15) 0.0000 (14)
O2 0.0701 (16) 0.0554 (16) 0.0701 (18) −0.0010 (12) 0.0100 (14) −0.0024 (13)

Geometric parameters (Å, °)

S1—C9 1.710 (3) C8—C9 1.367 (4)
S1—C1 1.719 (3) C8—C11 1.487 (5)
C1—N1 1.302 (4) C9—C10 1.489 (5)
C1—C2 1.470 (5) C10—F2 1.315 (4)
C2—C7 1.380 (4) C10—F1 1.319 (4)
C2—C3 1.386 (5) C10—F3 1.334 (4)
C3—C4 1.376 (5) C11—O1 1.192 (4)
C3—H3 0.9300 C11—O2 1.321 (4)
C4—C5 1.369 (5) C12—O2 1.459 (4)
C4—H4 0.9300 C12—C13 1.474 (5)
C5—C6 1.373 (5) C12—H12A 0.9700
C5—H5 0.9300 C12—H12B 0.9700
C6—C7 1.373 (5) C13—H13A 0.9600
C6—H6 0.9300 C13—H13B 0.9600
C7—H7 0.9300 C13—H13C 0.9600
C8—N1 1.367 (4)
C9—S1—C1 89.59 (17) C8—C9—S1 109.6 (3)
N1—C1—C2 123.2 (3) C10—C9—S1 118.6 (3)
N1—C1—S1 114.6 (2) F2—C10—F1 106.3 (3)
C2—C1—S1 122.2 (3) F2—C10—F3 106.0 (3)
C7—C2—C3 119.1 (3) F1—C10—F3 106.6 (3)
C7—C2—C1 119.7 (3) F2—C10—C9 114.7 (3)
C3—C2—C1 121.1 (3) F1—C10—C9 112.2 (3)
C4—C3—C2 120.3 (3) F3—C10—C9 110.5 (3)
C4—C3—H3 119.8 O1—C11—O2 124.8 (4)
C2—C3—H3 119.8 O1—C11—C8 124.0 (3)
C5—C4—C3 120.0 (4) O2—C11—C8 111.2 (3)
C5—C4—H4 120.0 O2—C12—C13 107.6 (4)
C3—C4—H4 120.0 O2—C12—H12A 110.2
C4—C5—C6 120.0 (4) C13—C12—H12A 110.2
C4—C5—H5 120.0 O2—C12—H12B 110.2
C6—C5—H5 120.0 C13—C12—H12B 110.2
C5—C6—C7 120.4 (4) H12A—C12—H12B 108.5
C5—C6—H6 119.8 C12—C13—H13A 109.5
C7—C6—H6 119.8 C12—C13—H13B 109.5
C6—C7—C2 120.1 (4) H13A—C13—H13B 109.5
C6—C7—H7 119.9 C12—C13—H13C 109.5
C2—C7—H7 119.9 H13A—C13—H13C 109.5
N1—C8—C9 115.3 (3) H13B—C13—H13C 109.5
N1—C8—C11 116.2 (3) C1—N1—C8 110.9 (3)
C9—C8—C11 128.5 (3) C11—O2—C12 115.9 (3)
C8—C9—C10 131.6 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2454).

References

  1. Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Campeau, L. C., Bertrand-Laperle, M., Leclerc, J. P., Villemure, E., Gorelsky, S. & Fagnou, K. (2008). J. Am. Chem. Soc.130, 3276–3277. [DOI] [PubMed]
  3. Kennedy, A. R., Khalaf, A. I., Suckling, C. J. & Waigh, R. D. (2004). Acta Cryst. E60, o1510–o1512.
  4. Rynbrandt, R. H., Nishizawa, E. E., Balogoyen, D. P., Mendoza, A. R. & Annis, K. A. (1981). J. Med. Chem.24, 1507–1510. [DOI] [PubMed]
  5. Sasse, F., Steinmetz, H., Schupp, T., Petersen, F., Memmert, K., Hofmann, H., Heusser, C., Brinkmann, V., Von Matt, P., Hofle, G. & Reichenbach, H. (2002). J. Antibiot.55, 543–545. [DOI] [PubMed]
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Zificsak, C. A. & Hlasta, D. J. (2004). Tetrahedron, 60, 8991–9016.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808030389/xu2454sup1.cif

e-64-o2004-sup1.cif (16.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030389/xu2454Isup2.hkl

e-64-o2004-Isup2.hkl (116.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES