Abstract
In the title compound, C13H10F3NO2S, the dihedral angle between the thiazole and phenyl rings is 5.15 (1)°. No intermolecular hydrogen bonding is observed in the crystal structure.
Related literature
For general backgroud, see: Sasse et al. (2002 ▶); Campeau et al. (2008 ▶); Zificsak & Hlasta (2004 ▶); Rynbrandt et al. (1981 ▶). For a related structure, see: Kennedy et al. (2004 ▶).
Experimental
Crystal data
C13H10F3NO2S
M r = 301.28
Monoclinic,
a = 8.930 (3) Å
b = 21.232 (6) Å
c = 7.574 (2) Å
β = 110.861 (4)°
V = 1342.0 (7) Å3
Z = 4
Mo Kα radiation
μ = 0.28 mm−1
T = 296 (2) K
0.30 × 0.10 × 0.10 mm
Data collection
Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996 ▶) T min = 0.922, T max = 0.973
6891 measured reflections
2367 independent reflections
1417 reflections with I > 2σ(I)
R int = 0.050
Refinement
R[F 2 > 2σ(F 2)] = 0.056
wR(F 2) = 0.142
S = 1.01
2367 reflections
182 parameters
H-atom parameters constrained
Δρmax = 0.22 e Å−3
Δρmin = −0.19 e Å−3
Data collection: SMART (Bruker, 2000 ▶); cell refinement: SAINT (Bruker, 2000 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808030389/xu2454sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030389/xu2454Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors are grateful for financial support from the Natural Science Foundation of China (No. 20772079) and the Science Foundation of Shanghai Municipal Commission of Sciences and Technology (07JC14020, 07ZR14040), and for structural analysis by the Instrumental Analysis & Research Center of Shanghai University.
supplementary crystallographic information
Comment
1,3-Thiazole derivatives have attracted considerable attention because of various biological activities (Sasse et al., 2002) and have broad applications in the materials science (Campeau et al., 2008). Thiazole can be used as a core for developing pharmaceutically important molecules (Zificsak & Hlasta, 2004). Trifluoromethyl substituted thiazole may be the most promising skeleton in medicinal chemistry (Rynbrandt et al., 1981). The title compound, multiple substitute 1,3-thiazol with trifluoromethyl group at 5-position, has been obtained unexpectedly in the laboratory during trying to prepare 3-chloro-2-dibenzylamino-4,4,4-trifluoro-butyric acid ethyl ester by a reaction of 2-dibenzylamino-4,4,4-trifluoro-3-hydroxy-butyric acid ethyl ester with thionyl chloride. We present here the crystal structure of the title compound.
The molecular structure is shown in Fig. 1. The bond lengths in the thiazole moiety agree with those found in methyl 2-amino-5-isopropyl-1,3-thiazole-4-carboxylate (Kennedy et al., 2004). The thiazole ring makes a dihedral angle of 5.15 (1)° with phenyl ring, showing the approximately coplanar molecular structure except for trifluoromethyl and ethoxy group. No intermolecular hydrogen bonding is observed in the crystal structure.
Experimental
A solution of 2-dibenzylamino-4, 4, 4-trifluoro-3-hydroxy-butyric acid ethyl ester (0.2 mmol) in 10 ml thionyl chloride was refluxed for a period of half an hour till the complete consumption of raw material. Excess thionyl chloride was evaporated, the residue was diluted with anhydrous ethanol (4 ml), then concentrated by rotary evaporator. The crude product was re-crystallized from ethanol (95%) and colorless needle-type crystals of (I) were obtained.
Refinement
All the H atoms were placed in geometrically idealized positions and constrained to ride their parent atoms, with C—H = 0.93 - 0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for others.
Figures
Fig. 1.
View of the title compound (I), shown the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by circles of arbitrary radii.
Crystal data
| C13H10F3NO2S | F(000) = 616 |
| Mr = 301.28 | Dx = 1.491 Mg m−3 |
| Monoclinic, P21/c | Melting point: 320 K |
| Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
| a = 8.930 (3) Å | Cell parameters from 1005 reflections |
| b = 21.232 (6) Å | θ = 2.5–19.0° |
| c = 7.574 (2) Å | µ = 0.28 mm−1 |
| β = 110.861 (4)° | T = 296 K |
| V = 1342.0 (7) Å3 | Needle, colorless |
| Z = 4 | 0.30 × 0.10 × 0.10 mm |
Data collection
| Bruker SMART CCD area-detector diffractometer | 2367 independent reflections |
| Radiation source: fine-focus sealed tube | 1417 reflections with I > 2σ(I) |
| graphite | Rint = 0.050 |
| φ and ω scans | θmax = 25.1°, θmin = 2.4° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→10 |
| Tmin = 0.922, Tmax = 0.973 | k = −25→19 |
| 6891 measured reflections | l = −8→8 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.142 | H-atom parameters constrained |
| S = 1.01 | w = 1/[σ2(Fo2) + (0.0642P)2] where P = (Fo2 + 2Fc2)/3 |
| 2367 reflections | (Δ/σ)max = 0.001 |
| 182 parameters | Δρmax = 0.22 e Å−3 |
| 0 restraints | Δρmin = −0.19 e Å−3 |
Special details
| Experimental. IR (KBr, cm-1): 3061, 2980, 1737, 1633, 1513, 1461, 1290, 1210, 766, 689. 1H NMR (CDCl3, 500 MHz). δ/p.p.m.: 7.46–8.00 (m, 5H), 4.49 (q, J = 7.0 Hz, 2H), 1.44 (t, J = 7.0 Hz, 3H). 13C NMR (CDCl3, 125 MHz). δ/p.p.m.: 168.87, 160.27, 146.48, 131.77, 131.63, 129.24, 164.15 (q, 2JC—F = 36.5 Hz, CF3C–), 123.33 (q, 1JC—F = 269.3 Hz, –CF3), 62.41, 13.98. 19F NMR (CDCl3, 470 MHz, CFCl3). δ/p.p.m.: -52.44 (s). |
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| S1 | 0.22302 (11) | 0.67958 (4) | 0.44789 (13) | 0.0585 (3) | |
| C1 | 0.1690 (4) | 0.75511 (15) | 0.3693 (5) | 0.0504 (8) | |
| C2 | 0.2697 (4) | 0.80979 (15) | 0.4545 (5) | 0.0523 (8) | |
| C3 | 0.4186 (4) | 0.80233 (17) | 0.5954 (5) | 0.0615 (10) | |
| H3 | 0.4559 | 0.7622 | 0.6376 | 0.074* | |
| C4 | 0.5115 (4) | 0.85408 (19) | 0.6732 (5) | 0.0681 (10) | |
| H4 | 0.6116 | 0.8488 | 0.7671 | 0.082* | |
| C5 | 0.4564 (5) | 0.91329 (18) | 0.6123 (6) | 0.0720 (11) | |
| H5 | 0.5192 | 0.9483 | 0.6646 | 0.086* | |
| C6 | 0.3083 (5) | 0.92108 (18) | 0.4743 (6) | 0.0741 (11) | |
| H6 | 0.2708 | 0.9614 | 0.4343 | 0.089* | |
| C7 | 0.2154 (4) | 0.86972 (16) | 0.3947 (5) | 0.0642 (10) | |
| H7 | 0.1156 | 0.8753 | 0.3004 | 0.077* | |
| C8 | −0.0328 (4) | 0.70143 (16) | 0.1739 (5) | 0.0514 (8) | |
| C9 | 0.0515 (4) | 0.65213 (16) | 0.2791 (5) | 0.0517 (8) | |
| C10 | 0.0138 (5) | 0.58379 (17) | 0.2771 (6) | 0.0674 (10) | |
| C11 | −0.1837 (4) | 0.69976 (18) | 0.0062 (5) | 0.0577 (9) | |
| C12 | −0.3482 (5) | 0.63721 (19) | −0.2455 (6) | 0.0857 (13) | |
| H12A | −0.3442 | 0.6683 | −0.3375 | 0.103* | |
| H12B | −0.4455 | 0.6438 | −0.2188 | 0.103* | |
| C13 | −0.3463 (7) | 0.5732 (2) | −0.3197 (7) | 0.133 (2) | |
| H13A | −0.2565 | 0.5689 | −0.3603 | 0.200* | |
| H13B | −0.4438 | 0.5660 | −0.4249 | 0.200* | |
| H13C | −0.3375 | 0.5429 | −0.2224 | 0.200* | |
| F1 | −0.1303 (3) | 0.57367 (10) | 0.2825 (4) | 0.0973 (8) | |
| F2 | 0.0198 (3) | 0.55287 (10) | 0.1294 (4) | 0.0932 (8) | |
| F3 | 0.1174 (3) | 0.55518 (10) | 0.4280 (4) | 0.1071 (9) | |
| N1 | 0.0337 (3) | 0.75955 (12) | 0.2277 (4) | 0.0522 (7) | |
| O1 | −0.2677 (3) | 0.74436 (12) | −0.0528 (4) | 0.0791 (8) | |
| O2 | −0.2081 (3) | 0.64335 (11) | −0.0726 (3) | 0.0693 (7) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| S1 | 0.0601 (6) | 0.0546 (6) | 0.0597 (6) | 0.0055 (4) | 0.0201 (5) | 0.0032 (4) |
| C1 | 0.053 (2) | 0.054 (2) | 0.053 (2) | 0.0023 (16) | 0.0291 (19) | 0.0011 (16) |
| C2 | 0.058 (2) | 0.055 (2) | 0.049 (2) | 0.0007 (17) | 0.0249 (18) | −0.0021 (17) |
| C3 | 0.060 (2) | 0.057 (2) | 0.069 (3) | 0.0017 (18) | 0.024 (2) | 0.0034 (18) |
| C4 | 0.058 (2) | 0.075 (3) | 0.066 (3) | −0.007 (2) | 0.016 (2) | −0.003 (2) |
| C5 | 0.074 (3) | 0.058 (3) | 0.086 (3) | −0.010 (2) | 0.030 (2) | −0.010 (2) |
| C6 | 0.073 (3) | 0.057 (2) | 0.089 (3) | 0.004 (2) | 0.024 (2) | −0.005 (2) |
| C7 | 0.063 (2) | 0.054 (2) | 0.070 (3) | 0.0019 (18) | 0.015 (2) | −0.0032 (18) |
| C8 | 0.053 (2) | 0.049 (2) | 0.057 (2) | 0.0039 (16) | 0.0256 (19) | −0.0011 (17) |
| C9 | 0.0499 (19) | 0.054 (2) | 0.057 (2) | 0.0036 (16) | 0.0259 (17) | −0.0019 (17) |
| C10 | 0.070 (3) | 0.054 (2) | 0.076 (3) | 0.0024 (19) | 0.022 (2) | 0.003 (2) |
| C11 | 0.056 (2) | 0.056 (2) | 0.063 (2) | 0.0018 (18) | 0.023 (2) | 0.0041 (19) |
| C12 | 0.084 (3) | 0.079 (3) | 0.073 (3) | −0.004 (2) | 0.003 (2) | −0.001 (2) |
| C13 | 0.172 (5) | 0.076 (4) | 0.103 (4) | 0.002 (3) | −0.012 (4) | −0.012 (3) |
| F1 | 0.0903 (17) | 0.0681 (15) | 0.149 (2) | −0.0148 (12) | 0.0613 (17) | 0.0074 (14) |
| F2 | 0.118 (2) | 0.0605 (14) | 0.109 (2) | 0.0018 (12) | 0.0492 (16) | −0.0211 (13) |
| F3 | 0.123 (2) | 0.0591 (15) | 0.108 (2) | 0.0033 (13) | 0.0028 (17) | 0.0185 (13) |
| N1 | 0.0500 (18) | 0.0519 (18) | 0.0575 (18) | 0.0012 (13) | 0.0227 (16) | 0.0024 (13) |
| O1 | 0.0707 (18) | 0.0663 (18) | 0.083 (2) | 0.0126 (14) | 0.0060 (15) | 0.0000 (14) |
| O2 | 0.0701 (16) | 0.0554 (16) | 0.0701 (18) | −0.0010 (12) | 0.0100 (14) | −0.0024 (13) |
Geometric parameters (Å, °)
| S1—C9 | 1.710 (3) | C8—C9 | 1.367 (4) |
| S1—C1 | 1.719 (3) | C8—C11 | 1.487 (5) |
| C1—N1 | 1.302 (4) | C9—C10 | 1.489 (5) |
| C1—C2 | 1.470 (5) | C10—F2 | 1.315 (4) |
| C2—C7 | 1.380 (4) | C10—F1 | 1.319 (4) |
| C2—C3 | 1.386 (5) | C10—F3 | 1.334 (4) |
| C3—C4 | 1.376 (5) | C11—O1 | 1.192 (4) |
| C3—H3 | 0.9300 | C11—O2 | 1.321 (4) |
| C4—C5 | 1.369 (5) | C12—O2 | 1.459 (4) |
| C4—H4 | 0.9300 | C12—C13 | 1.474 (5) |
| C5—C6 | 1.373 (5) | C12—H12A | 0.9700 |
| C5—H5 | 0.9300 | C12—H12B | 0.9700 |
| C6—C7 | 1.373 (5) | C13—H13A | 0.9600 |
| C6—H6 | 0.9300 | C13—H13B | 0.9600 |
| C7—H7 | 0.9300 | C13—H13C | 0.9600 |
| C8—N1 | 1.367 (4) | ||
| C9—S1—C1 | 89.59 (17) | C8—C9—S1 | 109.6 (3) |
| N1—C1—C2 | 123.2 (3) | C10—C9—S1 | 118.6 (3) |
| N1—C1—S1 | 114.6 (2) | F2—C10—F1 | 106.3 (3) |
| C2—C1—S1 | 122.2 (3) | F2—C10—F3 | 106.0 (3) |
| C7—C2—C3 | 119.1 (3) | F1—C10—F3 | 106.6 (3) |
| C7—C2—C1 | 119.7 (3) | F2—C10—C9 | 114.7 (3) |
| C3—C2—C1 | 121.1 (3) | F1—C10—C9 | 112.2 (3) |
| C4—C3—C2 | 120.3 (3) | F3—C10—C9 | 110.5 (3) |
| C4—C3—H3 | 119.8 | O1—C11—O2 | 124.8 (4) |
| C2—C3—H3 | 119.8 | O1—C11—C8 | 124.0 (3) |
| C5—C4—C3 | 120.0 (4) | O2—C11—C8 | 111.2 (3) |
| C5—C4—H4 | 120.0 | O2—C12—C13 | 107.6 (4) |
| C3—C4—H4 | 120.0 | O2—C12—H12A | 110.2 |
| C4—C5—C6 | 120.0 (4) | C13—C12—H12A | 110.2 |
| C4—C5—H5 | 120.0 | O2—C12—H12B | 110.2 |
| C6—C5—H5 | 120.0 | C13—C12—H12B | 110.2 |
| C5—C6—C7 | 120.4 (4) | H12A—C12—H12B | 108.5 |
| C5—C6—H6 | 119.8 | C12—C13—H13A | 109.5 |
| C7—C6—H6 | 119.8 | C12—C13—H13B | 109.5 |
| C6—C7—C2 | 120.1 (4) | H13A—C13—H13B | 109.5 |
| C6—C7—H7 | 119.9 | C12—C13—H13C | 109.5 |
| C2—C7—H7 | 119.9 | H13A—C13—H13C | 109.5 |
| N1—C8—C9 | 115.3 (3) | H13B—C13—H13C | 109.5 |
| N1—C8—C11 | 116.2 (3) | C1—N1—C8 | 110.9 (3) |
| C9—C8—C11 | 128.5 (3) | C11—O2—C12 | 115.9 (3) |
| C8—C9—C10 | 131.6 (3) |
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2454).
References
- Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Campeau, L. C., Bertrand-Laperle, M., Leclerc, J. P., Villemure, E., Gorelsky, S. & Fagnou, K. (2008). J. Am. Chem. Soc.130, 3276–3277. [DOI] [PubMed]
- Kennedy, A. R., Khalaf, A. I., Suckling, C. J. & Waigh, R. D. (2004). Acta Cryst. E60, o1510–o1512.
- Rynbrandt, R. H., Nishizawa, E. E., Balogoyen, D. P., Mendoza, A. R. & Annis, K. A. (1981). J. Med. Chem.24, 1507–1510. [DOI] [PubMed]
- Sasse, F., Steinmetz, H., Schupp, T., Petersen, F., Memmert, K., Hofmann, H., Heusser, C., Brinkmann, V., Von Matt, P., Hofle, G. & Reichenbach, H. (2002). J. Antibiot.55, 543–545. [DOI] [PubMed]
- Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Zificsak, C. A. & Hlasta, D. J. (2004). Tetrahedron, 60, 8991–9016.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808030389/xu2454sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030389/xu2454Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

