Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 27;64(Pt 10):o2031. doi: 10.1107/S1600536808030717

N-[3-(tert-Butyl­dimethyl­siloxymeth­yl)-5-nitro­phen­yl]acetamide

Gul S Khan a, George R Clark a,*, David Barker a
PMCID: PMC2959232  PMID: 21201225

Abstract

The title compound, C15H24N2O4Si, was prepared by the reaction of (3-acetamido-5-nitro­benz­yl)methanol with tert-butyl­dimethyl­silyl chloride and is a key inter­mediate in the synthesis of novel nonsymmetrical DNA minor groove-binding agents. There are two independent mol­ecules in the structure, which differ primarily in the rotation about the C—O bond next to the Si atom. Two strong N—H⋯O hydrogen bonds align the mol­ecules into a wide ribbon extending approximately parallel to the b axis.

Related literature

For literature related to protecting groups, see: Jarowicki & Kocienski (1998); Kocienski (2004); Schelhaas & Waldmann (1996); Wetter & Oertle (1985); Wuts & Green (2006). For literature related to benzamides as minor groove binders, see: Barker et al. (2008); Gong & Yan (1997). For related literature, see: Crouch (2004); Desiraju & Steiner (1999); Nelson & Crouch (1996).graphic file with name e-64-o2031-scheme1.jpg

Experimental

Crystal data

  • C15H24N2O4Si

  • M r = 324.45

  • Triclinic, Inline graphic

  • a = 9.5037 (3) Å

  • b = 10.0713 (3) Å

  • c = 18.1985 (5) Å

  • α = 89.885 (1)°

  • β = 86.009 (1)°

  • γ = 88.888 (1)°

  • V = 1737.31 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 90 (2) K

  • 0.34 × 0.22 × 0.20 mm

Data collection

  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997) T min = 0.878, T max = 0.977

  • 15951 measured reflections

  • 6570 independent reflections

  • 4732 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.117

  • S = 1.05

  • 6570 reflections

  • 409 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 1995); cell refinement: SAINT (Bruker, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808030717/fb2117sup1.cif

e-64-o2031-sup1.cif (26.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030717/fb2117Isup2.hkl

e-64-o2031-Isup2.hkl (315KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O1B 0.86 2.13 2.982 (2) 172
N1B—H1B⋯O1Ai 0.86 2.14 2.991 (2) 173

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the Higher Education Commission of Pakistan and The University of Auckland, New Zealand.

supplementary crystallographic information

Comment

Due to the nucleophilic nature of benzylic hydroxyl groups these are usually protected during multi-step organic synthesis (Barker et al., 2008). Large numbers of protecting groups are reported including a variety of silyl ethers. Among the silyl ethers, the tert-butyldimethylsilyl ether is widely used due to it stability towards oxidative, reductive, and mild acidic and basic conditions (Jarowicki & Kocienski, 1998; Kocienski, 2004; Schelhaas & Waldmann, 1996; Wetter & Oertle, 1985; Wuts & Green, 2006). It can however be easily deprotected to give the parent hydroxyl group efficiently using different fluoride reagents without affecting other functionalities (Crouch, 2004; Nelson & Crouch, 1996). The asymmetric unit contains two independent molecules which differ primarily in the rotation about the C7 - O4 bond. (Torsion angles C1-C7-O4-Si equal to -152.75, -110.21° for molecules A and B respectively). Two strong N-H···O hydrogen bonds (Desiraju & Steiner, 1999; Tab. 1) align the molecules into wide ribbons extending approximately parallel to the b axis. There are four very close intramolecular contacts (C4A-O1A 2.886 (3), C4B-O1B 2.894 (3), C6A-O4A 2.740 (3) and C6B-O4B 2.785 Å).

Experimental

To a solution of (3-acetamido-5-nitrobenzyl)methanol (alternatively 3-acetamido-5-nitrobenzyl alcohol) (150 mg, 0.714 mmol) in dry dimethylformamide (1 ml) under an atmosphere of nitrogen, was added tert-butyldimethylsilyl chloride (129 mg. 0.856 mmol) and imidazole (146 mg, 2.14 mmol) and the mixture stirred at room temperature, under an atmosphere of nitrogen for 2 h. Water (10 ml) was added, and the aqueous solution extracted with dichloromethane (2 × 10 ml). The combined organic extracts were washed with water (20 ml) and brine (20 ml), dried (MgSO4), filtered and the solvent removed in vacuo to afford the crude product, which was purified by flash chromatography (19:1 dichloromethane-methanol) to afford the title compound (214 mg, 93%) as a pale yellow solid, which was recrystallized from ethyl acetate and n-hexane to give a white crystal suitable for single-crystal analysis. (mp 416–417 K). νmax (NaCl)/cm-1 3315, 2929, 1666, 1532. δH (400 MHz, CDCl3) 0.13 (6H, s, OSi(CH3)2), 0.96 (9H, s, OSiC(CH3)2), 2.24 (3H, s, NHCOCH3), 4.79 (2H, s, ArCH2O), 7.56 (1H, s, NH), 7.91 (1H, s, Ar—H), 7.93 (1H, s, Ar—H) and 8.24 (1H, s, Ar—H). δC (100 MHz, CDCl3) -5.4 (CH3, OSi(CH3)2), 18.4 (quat. OSiC(CH3)3), 24.6 (CH3, NHCOCH3), 25.9 (CH3, OSiC(CH3)3), 63.8 (CH2, ArCH2O), 112.9 (CH, Ar—C), 116.2 (CH, Ar—C), 122.4 (CH, Ar—C), 138.8 (quat. Ar—C), 144.6 (quat. Ar—C), 148.6 (quat. Ar—C) and 168.6 (C=O). m/z (CI+) 325 (MH+, 43%), 295 (M+—CH2O, 100) 267 (M+-NHCOCH3, 35), 221 (M+—C2H4N2O3, 32). Found MH+ 325.15862, C15H25N2O4Si requires 325.15836.

Refinement

All the hydrogens were clearly discernible in the difference electron density map. Nevertheless, the hydrogens were placed in calculated positions and refined using the riding model under the conditions:. Caryl-Haryl=0.93, Cmethyl-Hmethyl=0.96, Cmethylene-Hmethylene = 0.97, N-H = 0.86 Å, Uiso(H) = 1.2Ueq(C) except for the methyl hydrogens where Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

Structure showing 50% probability displacement ellipsoids for non-hydrogen atoms with hydrogen atoms as arbitary spheres (Burnett & Johnson, 1996). The two molecules differ mainly in the rotation about the C7 - O4 bond.

Crystal data

C15H24N2O4Si Z = 4
Mr = 324.45 F(000) = 696
Triclinic, P1 Dx = 1.240 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.5037 (3) Å Cell parameters from 7491 reflections
b = 10.0713 (3) Å θ = 2.0–25.7°
c = 18.1985 (5) Å µ = 0.15 mm1
α = 89.885 (1)° T = 90 K
β = 86.009 (1)° Plate, colourless
γ = 88.888 (1)° 0.34 × 0.22 × 0.20 mm
V = 1737.31 (9) Å3

Data collection

Siemens SMART CCD diffractometer 6570 independent reflections
Radiation source: fine-focus sealed tube 4732 reflections with I > 2σ(I)
graphite Rint = 0.042
ω scans θmax = 25.7°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) h = −11→11
Tmin = 0.878, Tmax = 0.977 k = −12→12
15951 measured reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: difference Fourier map
wR(F2) = 0.117 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.5796P] where P = (Fo2 + 2Fc2)/3
6570 reflections (Δ/σ)max = 0.001
409 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.31 e Å3
180 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
SiA −0.17682 (7) 0.55743 (6) 0.16477 (4) 0.02135 (16)
O1A 0.24286 (16) 0.04298 (15) 0.50611 (8) 0.0226 (4)
O2A −0.05223 (17) −0.11050 (15) 0.34529 (9) 0.0266 (4)
O3A −0.22213 (17) −0.00550 (16) 0.29506 (9) 0.0277 (4)
O4A −0.16983 (18) 0.45572 (16) 0.23590 (9) 0.0289 (4)
N1A 0.19067 (19) 0.25787 (18) 0.47613 (10) 0.0198 (4)
H1A 0.2094 0.3387 0.4864 0.024*
N2A −0.1138 (2) −0.00728 (18) 0.32807 (10) 0.0210 (4)
C1A −0.0477 (2) 0.3543 (2) 0.33345 (12) 0.0205 (5)
C2A 0.0484 (2) 0.3574 (2) 0.38736 (12) 0.0201 (5)
H2A 0.0839 0.4386 0.4008 0.024*
C3A 0.0934 (2) 0.2417 (2) 0.42199 (12) 0.0182 (5)
C4A 0.0406 (2) 0.1201 (2) 0.40215 (12) 0.0189 (5)
H4A 0.0687 0.0415 0.4242 0.023*
C5A −0.0547 (2) 0.1205 (2) 0.34864 (12) 0.0186 (5)
C6A −0.1015 (2) 0.2331 (2) 0.31340 (12) 0.0207 (5)
H6A −0.1664 0.2280 0.2776 0.025*
C7A −0.0922 (3) 0.4822 (2) 0.29796 (14) 0.0293 (6)
H7A1 −0.1500 0.5350 0.3334 0.035*
H7A2 −0.0094 0.5328 0.2826 0.035*
C8A 0.2593 (2) 0.1632 (2) 0.51459 (12) 0.0197 (5)
C9A 0.3541 (2) 0.2174 (2) 0.56920 (13) 0.0234 (5)
H9A1 0.3141 0.2013 0.6182 0.035*
H9A2 0.3638 0.3112 0.5616 0.035*
H9A3 0.4451 0.1744 0.5627 0.035*
C10A 0.0040 (3) 0.5812 (3) 0.12128 (17) 0.0410 (7)
H10A 0.0640 0.6130 0.1575 0.061*
H10B 0.0004 0.6448 0.0821 0.061*
H10C 0.0409 0.4980 0.1019 0.061*
C11A −0.2521 (3) 0.7202 (2) 0.19618 (15) 0.0353 (6)
H11A −0.3412 0.7073 0.2232 0.053*
H11B −0.2656 0.7758 0.1542 0.053*
H11C −0.1886 0.7619 0.2274 0.053*
C12A −0.2923 (2) 0.4702 (2) 0.10128 (12) 0.0223 (5)
C13A −0.3086 (3) 0.5563 (3) 0.03232 (14) 0.0376 (7)
H13A −0.2169 0.5763 0.0099 0.056*
H13B −0.3581 0.6374 0.0461 0.056*
H13C −0.3608 0.5088 −0.0021 0.056*
C14A −0.2269 (3) 0.3351 (2) 0.07771 (15) 0.0329 (6)
H14A −0.2887 0.2907 0.0467 0.049*
H14B −0.2136 0.2820 0.1206 0.049*
H14C −0.1375 0.3482 0.0511 0.049*
C15A −0.4387 (2) 0.4478 (3) 0.14056 (14) 0.0290 (6)
H15A −0.4971 0.4032 0.1078 0.043*
H15B −0.4815 0.5319 0.1547 0.043*
H15C −0.4287 0.3943 0.1837 0.043*
SiB 0.66924 (7) 1.00767 (6) 0.83117 (4) 0.02233 (17)
O1B 0.26630 (16) 0.54068 (15) 0.49672 (9) 0.0252 (4)
O2B 0.54486 (18) 0.38508 (16) 0.66784 (9) 0.0296 (4)
O3B 0.71294 (17) 0.48319 (16) 0.71949 (9) 0.0279 (4)
O4B 0.71134 (16) 0.96086 (16) 0.74525 (9) 0.0245 (4)
N1B 0.31186 (19) 0.75499 (18) 0.52717 (10) 0.0190 (4)
H1B 0.2892 0.8359 0.5175 0.023*
N2B 0.6080 (2) 0.48532 (19) 0.68401 (10) 0.0216 (4)
C1B 0.5633 (2) 0.8507 (2) 0.66133 (13) 0.0209 (5)
C2B 0.4649 (2) 0.8537 (2) 0.60912 (12) 0.0194 (5)
H2B 0.4337 0.9355 0.5920 0.023*
C3B 0.4107 (2) 0.7380 (2) 0.58106 (12) 0.0191 (5)
C4B 0.4566 (2) 0.6150 (2) 0.60630 (12) 0.0197 (5)
H4B 0.4221 0.5361 0.5889 0.024*
C5B 0.5557 (2) 0.6154 (2) 0.65841 (13) 0.0205 (5)
C6B 0.6107 (2) 0.7283 (2) 0.68713 (12) 0.0211 (5)
H6B 0.6769 0.7230 0.7224 0.025*
C7B 0.6209 (3) 0.9803 (2) 0.68756 (13) 0.0262 (6)
H7B1 0.6722 1.0235 0.6466 0.031*
H7B2 0.5428 1.0385 0.7045 0.031*
C8B 0.2475 (2) 0.6608 (2) 0.48844 (13) 0.0206 (5)
C9B 0.1529 (2) 0.7165 (2) 0.43247 (13) 0.0229 (5)
H9B1 0.1964 0.7023 0.3839 0.034*
H9B2 0.1381 0.8100 0.4408 0.034*
H9B3 0.0639 0.6728 0.4371 0.034*
C10B 0.4914 (3) 0.9443 (3) 0.86052 (17) 0.0406 (7)
H10D 0.4242 0.9766 0.8274 0.061*
H10E 0.4642 0.9746 0.9095 0.061*
H10F 0.4940 0.8489 0.8597 0.061*
C11B 0.6654 (3) 1.1913 (2) 0.83711 (16) 0.0387 (7)
H11D 0.7545 1.2248 0.8179 0.058*
H11E 0.6483 1.2178 0.8876 0.058*
H11F 0.5916 1.2264 0.8089 0.058*
C12B 0.8116 (3) 0.9314 (2) 0.88521 (13) 0.0264 (6)
C13B 0.7726 (3) 0.9463 (3) 0.96821 (15) 0.0454 (8)
H13D 0.8460 0.9072 0.9953 0.068*
H13E 0.6856 0.9021 0.9807 0.068*
H13F 0.7618 1.0388 0.9804 0.068*
C14B 0.8295 (3) 0.7825 (2) 0.86699 (15) 0.0333 (6)
H14D 0.8574 0.7719 0.8156 0.050*
H14E 0.7417 0.7389 0.8782 0.050*
H14F 0.9007 0.7438 0.8958 0.050*
C15B 0.9528 (3) 0.9991 (3) 0.86574 (16) 0.0354 (6)
H15D 1.0253 0.9569 0.8922 0.053*
H15E 0.9448 1.0912 0.8791 0.053*
H15F 0.9766 0.9914 0.8138 0.053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
SiA 0.0258 (3) 0.0145 (3) 0.0240 (4) −0.0004 (3) −0.0037 (3) 0.0021 (3)
O1A 0.0285 (9) 0.0141 (8) 0.0259 (9) −0.0001 (7) −0.0061 (7) 0.0015 (7)
O2A 0.0325 (9) 0.0144 (8) 0.0336 (10) 0.0024 (7) −0.0090 (8) −0.0033 (7)
O3A 0.0272 (9) 0.0239 (9) 0.0335 (10) −0.0010 (7) −0.0119 (8) −0.0038 (8)
O4A 0.0374 (10) 0.0220 (9) 0.0297 (10) −0.0085 (8) −0.0177 (8) 0.0095 (7)
N1A 0.0242 (10) 0.0120 (9) 0.0239 (10) 0.0009 (8) −0.0057 (8) 0.0002 (8)
N2A 0.0254 (11) 0.0149 (10) 0.0227 (11) −0.0001 (8) −0.0015 (9) −0.0022 (8)
C1A 0.0236 (12) 0.0175 (12) 0.0203 (12) −0.0015 (10) −0.0004 (10) 0.0016 (10)
C2A 0.0223 (12) 0.0152 (11) 0.0225 (12) −0.0009 (9) 0.0003 (10) 0.0007 (10)
C3A 0.0189 (11) 0.0165 (11) 0.0188 (12) 0.0010 (9) −0.0005 (9) 0.0000 (9)
C4A 0.0200 (11) 0.0147 (11) 0.0218 (12) 0.0012 (9) 0.0003 (10) 0.0020 (9)
C5A 0.0199 (11) 0.0156 (11) 0.0203 (12) −0.0020 (9) 0.0009 (10) −0.0043 (9)
C6A 0.0225 (12) 0.0201 (12) 0.0197 (12) 0.0009 (10) −0.0037 (10) −0.0031 (10)
C7A 0.0385 (14) 0.0200 (13) 0.0315 (14) −0.0024 (11) −0.0166 (12) 0.0051 (11)
C8A 0.0212 (12) 0.0177 (12) 0.0200 (12) 0.0010 (9) −0.0002 (10) 0.0031 (9)
C9A 0.0278 (13) 0.0166 (12) 0.0268 (13) −0.0029 (10) −0.0083 (11) 0.0038 (10)
C10A 0.0344 (15) 0.0291 (15) 0.059 (2) −0.0062 (12) 0.0031 (14) −0.0046 (14)
C11A 0.0458 (16) 0.0218 (14) 0.0384 (16) 0.0039 (12) −0.0049 (13) −0.0032 (12)
C12A 0.0279 (13) 0.0203 (12) 0.0192 (12) 0.0008 (10) −0.0039 (10) 0.0026 (10)
C13A 0.0455 (17) 0.0416 (17) 0.0267 (14) −0.0017 (13) −0.0096 (13) 0.0101 (13)
C14A 0.0418 (16) 0.0252 (14) 0.0318 (15) −0.0010 (12) −0.0023 (12) −0.0050 (11)
C15A 0.0287 (13) 0.0283 (14) 0.0308 (14) −0.0022 (11) −0.0075 (11) 0.0021 (11)
SiB 0.0263 (4) 0.0151 (3) 0.0256 (4) 0.0002 (3) −0.0016 (3) −0.0021 (3)
O1B 0.0291 (9) 0.0142 (8) 0.0332 (10) 0.0009 (7) −0.0086 (8) 0.0002 (7)
O2B 0.0364 (10) 0.0172 (9) 0.0363 (10) −0.0019 (8) −0.0102 (8) 0.0038 (8)
O3B 0.0268 (9) 0.0247 (9) 0.0334 (10) 0.0016 (7) −0.0117 (8) 0.0056 (8)
O4B 0.0281 (9) 0.0237 (9) 0.0227 (9) 0.0006 (7) −0.0085 (7) −0.0033 (7)
N1B 0.0227 (10) 0.0121 (9) 0.0225 (10) 0.0023 (8) −0.0049 (8) 0.0002 (8)
N2B 0.0250 (11) 0.0179 (10) 0.0220 (10) 0.0011 (8) −0.0027 (9) 0.0026 (8)
C1B 0.0237 (12) 0.0167 (12) 0.0220 (12) 0.0002 (10) 0.0006 (10) −0.0009 (10)
C2B 0.0218 (12) 0.0142 (11) 0.0219 (12) 0.0024 (9) 0.0007 (10) 0.0021 (9)
C3B 0.0191 (11) 0.0175 (12) 0.0206 (12) 0.0009 (9) −0.0004 (10) 0.0001 (10)
C4B 0.0213 (12) 0.0136 (11) 0.0237 (12) −0.0005 (9) 0.0015 (10) −0.0009 (9)
C5B 0.0223 (12) 0.0164 (12) 0.0227 (12) 0.0021 (9) −0.0006 (10) 0.0022 (10)
C6B 0.0222 (12) 0.0217 (12) 0.0191 (12) 0.0010 (10) −0.0006 (10) −0.0001 (10)
C7B 0.0309 (13) 0.0201 (12) 0.0286 (14) −0.0012 (10) −0.0095 (11) −0.0005 (10)
C8B 0.0200 (12) 0.0185 (12) 0.0227 (12) 0.0010 (10) 0.0013 (10) −0.0031 (10)
C9B 0.0266 (12) 0.0159 (12) 0.0265 (13) 0.0017 (10) −0.0055 (10) −0.0018 (10)
C10B 0.0348 (15) 0.0322 (15) 0.0533 (19) 0.0004 (12) 0.0063 (14) −0.0005 (14)
C11B 0.0473 (17) 0.0226 (14) 0.0481 (18) 0.0031 (12) −0.0172 (14) −0.0052 (13)
C12B 0.0353 (14) 0.0226 (13) 0.0215 (13) 0.0013 (11) −0.0043 (11) −0.0016 (10)
C13B 0.069 (2) 0.0412 (18) 0.0267 (15) 0.0057 (15) −0.0072 (14) −0.0018 (13)
C14B 0.0413 (16) 0.0208 (13) 0.0387 (16) 0.0056 (12) −0.0108 (13) 0.0004 (12)
C15B 0.0305 (14) 0.0329 (15) 0.0439 (17) −0.0011 (12) −0.0106 (12) 0.0007 (13)

Geometric parameters (Å, °)

SiA—O4A 1.6533 (16) SiB—O4B 1.6540 (17)
SiA—C11A 1.851 (3) SiB—C11B 1.852 (3)
SiA—C10A 1.861 (3) SiB—C10B 1.862 (3)
SiA—C12A 1.879 (2) SiB—C12B 1.879 (2)
O1A—C8A 1.235 (3) O1B—C8B 1.230 (3)
O2A—N2A 1.233 (2) O2B—N2B 1.231 (2)
O3A—N2A 1.228 (2) O3B—N2B 1.225 (2)
O4A—C7A 1.420 (3) O4B—C7B 1.414 (3)
N1A—C8A 1.364 (3) N1B—C8B 1.362 (3)
N1A—C3A 1.409 (3) N1B—C3B 1.412 (3)
N1A—H1A 0.8600 N1B—H1B 0.8600
N2A—C5A 1.473 (3) N2B—C5B 1.478 (3)
C1A—C2A 1.387 (3) C1B—C2B 1.378 (3)
C1A—C6A 1.392 (3) C1B—C6B 1.396 (3)
C1A—C7A 1.507 (3) C1B—C7B 1.515 (3)
C2A—C3A 1.398 (3) C2B—C3B 1.395 (3)
C2A—H2A 0.9300 C2B—H2B 0.9300
C3A—C4A 1.390 (3) C3B—C4B 1.393 (3)
C4A—C5A 1.375 (3) C4B—C5B 1.382 (3)
C4A—H4A 0.9300 C4B—H4B 0.9300
C5A—C6A 1.383 (3) C5B—C6B 1.379 (3)
C6A—H6A 0.9300 C6B—H6B 0.9300
C7A—H7A1 0.9700 C7B—H7B1 0.9700
C7A—H7A2 0.9700 C7B—H7B2 0.9700
C8A—C9A 1.498 (3) C8B—C9B 1.505 (3)
C9A—H9A1 0.9600 C9B—H9B1 0.9600
C9A—H9A2 0.9600 C9B—H9B2 0.9600
C9A—H9A3 0.9600 C9B—H9B3 0.9600
C10A—H10A 0.9600 C10B—H10D 0.9600
C10A—H10B 0.9600 C10B—H10E 0.9600
C10A—H10C 0.9600 C10B—H10F 0.9600
C11A—H11A 0.9600 C11B—H11D 0.9600
C11A—H11B 0.9600 C11B—H11E 0.9600
C11A—H11C 0.9600 C11B—H11F 0.9600
C12A—C14A 1.534 (3) C12B—C15B 1.535 (4)
C12A—C13A 1.539 (3) C12B—C13B 1.537 (4)
C12A—C15A 1.540 (3) C12B—C14B 1.541 (3)
C13A—H13A 0.9600 C13B—H13D 0.9600
C13A—H13B 0.9600 C13B—H13E 0.9600
C13A—H13C 0.9600 C13B—H13F 0.9600
C14A—H14A 0.9600 C14B—H14D 0.9600
C14A—H14B 0.9600 C14B—H14E 0.9600
C14A—H14C 0.9600 C14B—H14F 0.9600
C15A—H15A 0.9600 C15B—H15D 0.9600
C15A—H15B 0.9600 C15B—H15E 0.9600
C15A—H15C 0.9600 C15B—H15F 0.9600
O4A—SiA—C11A 109.65 (11) O4B—SiB—C11B 109.84 (11)
O4A—SiA—C10A 109.68 (11) O4B—SiB—C10B 108.94 (12)
C11A—SiA—C10A 109.21 (13) C11B—SiB—C10B 109.21 (13)
O4A—SiA—C12A 104.02 (9) O4B—SiB—C12B 104.37 (10)
C11A—SiA—C12A 112.45 (11) C11B—SiB—C12B 111.97 (12)
C10A—SiA—C12A 111.70 (12) C10B—SiB—C12B 112.37 (12)
C7A—O4A—SiA 123.43 (15) C7B—O4B—SiB 123.18 (15)
C8A—N1A—C3A 129.01 (19) C8B—N1B—C3B 128.91 (19)
C8A—N1A—H1A 115.5 C8B—N1B—H1B 115.5
C3A—N1A—H1A 115.5 C3B—N1B—H1B 115.5
O3A—N2A—O2A 123.41 (19) O3B—N2B—O2B 123.62 (18)
O3A—N2A—C5A 118.28 (17) O3B—N2B—C5B 118.09 (19)
O2A—N2A—C5A 118.31 (18) O2B—N2B—C5B 118.28 (18)
C2A—C1A—C6A 119.3 (2) C2B—C1B—C6B 119.2 (2)
C2A—C1A—C7A 119.4 (2) C2B—C1B—C7B 119.2 (2)
C6A—C1A—C7A 121.3 (2) C6B—C1B—C7B 121.6 (2)
C1A—C2A—C3A 121.7 (2) C1B—C2B—C3B 122.1 (2)
C1A—C2A—H2A 119.1 C1B—C2B—H2B 118.9
C3A—C2A—H2A 119.1 C3B—C2B—H2B 118.9
C4A—C3A—C2A 119.3 (2) C4B—C3B—C2B 119.4 (2)
C4A—C3A—N1A 124.29 (19) C4B—C3B—N1B 124.2 (2)
C2A—C3A—N1A 116.4 (2) C2B—C3B—N1B 116.38 (19)
C5A—C4A—C3A 117.5 (2) C5B—C4B—C3B 117.0 (2)
C5A—C4A—H4A 121.3 C5B—C4B—H4B 121.5
C3A—C4A—H4A 121.3 C3B—C4B—H4B 121.5
C4A—C5A—C6A 124.6 (2) C6B—C5B—C4B 124.7 (2)
C4A—C5A—N2A 118.10 (19) C6B—C5B—N2B 117.9 (2)
C6A—C5A—N2A 117.30 (19) C4B—C5B—N2B 117.5 (2)
C5A—C6A—C1A 117.5 (2) C5B—C6B—C1B 117.5 (2)
C5A—C6A—H6A 121.2 C5B—C6B—H6B 121.2
C1A—C6A—H6A 121.2 C1B—C6B—H6B 121.2
O4A—C7A—C1A 110.39 (19) O4B—C7B—C1B 112.15 (19)
O4A—C7A—H7A1 109.6 O4B—C7B—H7B1 109.2
C1A—C7A—H7A1 109.6 C1B—C7B—H7B1 109.2
O4A—C7A—H7A2 109.6 O4B—C7B—H7B2 109.2
C1A—C7A—H7A2 109.6 C1B—C7B—H7B2 109.2
H7A1—C7A—H7A2 108.1 H7B1—C7B—H7B2 107.9
O1A—C8A—N1A 122.9 (2) O1B—C8B—N1B 123.7 (2)
O1A—C8A—C9A 122.75 (19) O1B—C8B—C9B 122.3 (2)
N1A—C8A—C9A 114.29 (19) N1B—C8B—C9B 114.01 (19)
C8A—C9A—H9A1 109.5 C8B—C9B—H9B1 109.5
C8A—C9A—H9A2 109.5 C8B—C9B—H9B2 109.5
H9A1—C9A—H9A2 109.5 H9B1—C9B—H9B2 109.5
C8A—C9A—H9A3 109.5 C8B—C9B—H9B3 109.5
H9A1—C9A—H9A3 109.5 H9B1—C9B—H9B3 109.5
H9A2—C9A—H9A3 109.5 H9B2—C9B—H9B3 109.5
SiA—C10A—H10A 109.5 SiB—C10B—H10D 109.5
SiA—C10A—H10B 109.5 SiB—C10B—H10E 109.5
H10A—C10A—H10B 109.5 H10D—C10B—H10E 109.5
SiA—C10A—H10C 109.5 SiB—C10B—H10F 109.5
H10A—C10A—H10C 109.5 H10D—C10B—H10F 109.5
H10B—C10A—H10C 109.5 H10E—C10B—H10F 109.5
SiA—C11A—H11A 109.5 SiB—C11B—H11D 109.5
SiA—C11A—H11B 109.5 SiB—C11B—H11E 109.5
H11A—C11A—H11B 109.5 H11D—C11B—H11E 109.5
SiA—C11A—H11C 109.5 SiB—C11B—H11F 109.5
H11A—C11A—H11C 109.5 H11D—C11B—H11F 109.5
H11B—C11A—H11C 109.5 H11E—C11B—H11F 109.5
C14A—C12A—C13A 109.0 (2) C15B—C12B—C13B 109.3 (2)
C14A—C12A—C15A 108.7 (2) C15B—C12B—C14B 108.4 (2)
C13A—C12A—C15A 109.36 (19) C13B—C12B—C14B 108.6 (2)
C14A—C12A—SiA 110.59 (16) C15B—C12B—SiB 110.34 (17)
C13A—C12A—SiA 109.21 (17) C13B—C12B—SiB 110.11 (18)
C15A—C12A—SiA 109.89 (16) C14B—C12B—SiB 110.04 (17)
C12A—C13A—H13A 109.5 C12B—C13B—H13D 109.5
C12A—C13A—H13B 109.5 C12B—C13B—H13E 109.5
H13A—C13A—H13B 109.5 H13D—C13B—H13E 109.5
C12A—C13A—H13C 109.5 C12B—C13B—H13F 109.5
H13A—C13A—H13C 109.5 H13D—C13B—H13F 109.5
H13B—C13A—H13C 109.5 H13E—C13B—H13F 109.5
C12A—C14A—H14A 109.5 C12B—C14B—H14D 109.5
C12A—C14A—H14B 109.5 C12B—C14B—H14E 109.5
H14A—C14A—H14B 109.5 H14D—C14B—H14E 109.5
C12A—C14A—H14C 109.5 C12B—C14B—H14F 109.5
H14A—C14A—H14C 109.5 H14D—C14B—H14F 109.5
H14B—C14A—H14C 109.5 H14E—C14B—H14F 109.5
C12A—C15A—H15A 109.5 C12B—C15B—H15D 109.5
C12A—C15A—H15B 109.5 C12B—C15B—H15E 109.5
H15A—C15A—H15B 109.5 H15D—C15B—H15E 109.5
C12A—C15A—H15C 109.5 C12B—C15B—H15F 109.5
H15A—C15A—H15C 109.5 H15D—C15B—H15F 109.5
H15B—C15A—H15C 109.5 H15E—C15B—H15F 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1A—H1A···O1B 0.86 2.13 2.982 (2) 172.
N1B—H1B···O1Ai 0.86 2.14 2.991 (2) 173.

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2117).

References

  1. Barker, D., Lehmann, A. L., Mai, A., Khan, G. S. & Ng, E. (2008). Tetrahedron Lett.49, 1660–1664.
  2. Bruker (1995). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  4. Crouch, R. D. (2004). Tetrahedron, 60, 5833–5871.
  5. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond IUCr Monographs on Crystallography 9. New York: Oxford University Press.
  6. Gong, B. & Yan, Y. (1997). Biochem. Biophys. Res. Commun.240, 557–560. [DOI] [PubMed]
  7. Jarowicki, K. & Kocienski, P. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 4005–4037.
  8. Kocienski, P. J. (2004). Protein Groups, 3rd ed. New York, Stuttgart: Georg Thieme.
  9. Nelson, T. D. & Crouch, R. D. (1996). Synthesis, 9, 1031–1069.
  10. Schelhaas, M. & Waldmann, H. (1996). Angew. Chem. Int. Ed.35, 2056–2083.
  11. Sheldrick, G. M. (1997). SADABS University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Wetter, H. & Oertle, K. (1985). Tetrahedron Lett.26, 5515–5518.
  14. Wuts, P. G. & Green, T. W. (2006). Protective Groups in Organic Synthesis, 4th ed. Hoboken: Wiley.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808030717/fb2117sup1.cif

e-64-o2031-sup1.cif (26.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030717/fb2117Isup2.hkl

e-64-o2031-Isup2.hkl (315KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES