Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 6;64(Pt 10):m1237. doi: 10.1107/S1600536808027876

Bis(2,6-dimethyl­pyridine-κN)gold(I) tetra­chloridoaurate(III)

Roya Ahmadi a, Leila Dehghan a, Vahid Amani a,*, Hamid Reza Khavasi b
PMCID: PMC2959233  PMID: 21200996

Abstract

In the cation of the title compound, [Au(C7H9N)2][AuCl4], the AuI atom is two-coordinated in a linear arrangement by two N atoms from two 2,6-dimethyl­pyridine ligands. In the anion, the AuIII atom has a virtually square-planar coordination geometry. The Au atoms both are located on centers of inversion. The crystal structure involves inter­molecular C—H⋯Cl hydrogen bonds.

Related literature

For related literature, see: Abbate et al. (2000); Adams & Strähle (1982); Ahmadi et al. (2008); Amani et al. (2008); Bjerne­mose et al. (2004); Hayoun et al. (2006); Hojjat Kashani et al. (2008); Hollis & Lippard (1983); McInnes et al. (1995); Yildirim et al. (2008).graphic file with name e-64-m1237-scheme1.jpg

Experimental

Crystal data

  • [Au(C7H9N)2][AuCl4]

  • M r = 750.04

  • Monoclinic, Inline graphic

  • a = 17.773 (3) Å

  • b = 6.8395 (8) Å

  • c = 8.3728 (14) Å

  • β = 110.929 (12)°

  • V = 950.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 15.97 mm−1

  • T = 298 (2) K

  • 0.20 × 0.12 × 0.08 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.112, T max = 0.275

  • 5473 measured reflections

  • 1384 independent reflections

  • 1123 reflections with I > 2σ(I)

  • R int = 0.092

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.115

  • S = 1.20

  • 1384 reflections

  • 69 parameters

  • H-atom parameters constrained

  • Δρmax = 1.76 e Å−3

  • Δρmin = −2.1 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808027876/hy2150sup1.cif

e-64-m1237-sup1.cif (12.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027876/hy2150Isup2.hkl

e-64-m1237-Isup2.hkl (67KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Au1—N1 2.030 (8)
Au2—Cl1 2.280 (3)
Au2—Cl2 2.286 (4)
Cl1i—Au2—Cl2 90.05 (14)
Cl1—Au2—Cl2 89.95 (14)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cl1ii 0.93 2.77 3.572 (14) 145

Symmetry code: (ii) Inline graphic.

Acknowledgments

We are grateful to Islamic Azad University, Shahr-e-Rey Branch, for financial support.

supplementary crystallographic information

Comment

Recently, we reported the syntheses and crystal structures of [Au(dmphen)Cl2][AuCl4], (II), (Ahmadi et al., 2008), [dmpyH][PtCl6], (III), (Amani et al., 2008) and [H2DA18C6][AuCl4].2H2O, (IV), (Hojjat Kashani et al., 2008) (dmphen = 4,7-diphenyl-1,10-phenanthroline; dmpyH = 2,6-dimethylpyridinium and H2DA18C6 = 1,10-diazonia-18-crown-6). Several AuIII complexes with formula [AuCl2L]X, such as [AuCl2(bipy)](BF4), (V), (McInnes et al., 1995), [AuCl2(bipy)](NO3), (VI), (Bjernemose et al., 2004), [AuCl2(bipy)][AuBr4], (VII), (Hayoun et al., 2006), [AuCl2(dtbpy)][AuCl4].CH3CN, (VIII), (Yildirim et al., 2008) and [AuCl2(phen)]Cl.H2O, (IX), (Abbate et al., 2000) (bipy = 2,2'-bipyridine; dtbpy = 4,4'-ditertbutyl-2,2'-bipyridine; phen = 1,10-phenanthroline) have been synthesized and characterized by single-crystal X-ray diffraction methods. Two AuIII complexes with formula [AuCl2L2]X, [AuCl2(py)2][AuCl4], (X), and [AuCl2(py)2]Cl.H2O, (XI), (Adams & Strahle, 1982) (py = pyridine) and only one mixed-valence AuI–AuIII complex, [Au(terpy)Cl]2[AuCl2]3[AuCl4], (XII), (Hollis & Lippard, 1983) (terpy = 2,2',2''-terpyridine) have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound (I).

In the cation of the title compound (Fig. 1), the AuI atom is two-coordinated in a linear arrangement by two N atoms from two 2,6-dimethylpyridine ligands. In the anion, the AuIII atom has a square-planar coordination geometry. The Au atoms each are located on an inversion center. In the cation, the Au—N bond length (Table 1) is in good agreement with the corresponding values in (X) and (XI) and in the anion, the Au—Cl bond lengths and angles (Table 1) are within a normal range, comparable with those in (II), (VIII) and (XII). In the crystal structure, intermolecular C—H···Cl hydrogen bonds are observed.

Experimental

A solution of 2,6-dimethylpyridine (0.12 g, 1.09 mmol) in methanol (15 ml) was added to a solution of HAuCl3.3H2O, (0.37 g, 1.09 mmol) in acetonitrile (15 ml). The resulting yellow solution was stirred for 10 min at 313 K, and then it was left to evaporate slowly at room temperature. After one week, yellow block crystals of (I) were isolated (yield 75.8%, 0.31 g; m. p. 489 K).

Refinement

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å and with Uiso(H) = 1.2Ueq(C). The highest residual electron density was found 0.90 Å from atom Au2 and the deepest hole 0.81 Å from atom Au2.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level. [Symmetry code: (i) -x, y, 1 - z.]

Crystal data

[Au(C7H9N)2][AuCl4] F(000) = 684
Mr = 750.04 Dx = 2.62 Mg m3
Monoclinic, C2/m Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2y Cell parameters from 971 reflections
a = 17.773 (3) Å θ = 2.6–29.2°
b = 6.8395 (8) Å µ = 15.97 mm1
c = 8.3728 (14) Å T = 298 K
β = 110.929 (12)° Block, yellow
V = 950.6 (3) Å3 0.20 × 0.12 × 0.08 mm
Z = 2

Data collection

Bruker SMART APEX CCD area-detector diffractometer 1123 reflections with I > 2σ(I)
φ and ω scans Rint = 0.092
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) θmax = 29.2°, θmin = 2.6°
Tmin = 0.112, Tmax = 0.275 h = −23→24
5473 measured reflections k = −9→8
1384 independent reflections l = −11→11

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0468P)2 + 5.4887P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.115 (Δ/σ)max = 0.004
S = 1.20 Δρmax = 1.76 e Å3
1384 reflections Δρmin = −2.1 e Å3
69 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Au1 0 0.5 0.5 0.04157 (18)
Au2 0 0 0.5 0.0484 (2)
Cl1 0.13598 (17) 0 0.6416 (5) 0.0656 (9)
Cl2 0.0196 (2) 0 0.2445 (5) 0.0726 (10)
N1 0.1180 (5) 0.5 0.6531 (12) 0.044 (2)
C1 0.0754 (8) 0.5 0.8993 (16) 0.068 (4)
H1A 0.0803 0.6146 0.9684 0.081*
H1B 0.0238 0.5 0.8084 0.081*
C2 0.1398 (7) 0.5 0.8262 (15) 0.054 (3)
C3 0.2206 (8) 0.5 0.9317 (17) 0.071 (4)
H3 0.2353 0.5 1.05 0.085*
C4 0.2774 (8) 0.5 0.859 (2) 0.079 (5)
H4 0.3315 0.5 0.9288 0.095*
C5 0.2568 (8) 0.5 0.684 (2) 0.065 (3)
H5 0.2965 0.5 0.6361 0.078*
C6 0.1763 (6) 0.5 0.5816 (15) 0.047 (2)
C7 0.1497 (8) 0.5 0.3949 (19) 0.069 (4)
H7A 0.1702 0.386 0.3574 0.083*
H7B 0.0919 0.5 0.3473 0.083*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Au1 0.0319 (3) 0.0531 (4) 0.0374 (3) 0 0.00961 (19) 0
Au2 0.0327 (3) 0.0502 (4) 0.0538 (3) 0 0.0053 (2) 0
Cl1 0.0327 (12) 0.071 (2) 0.077 (2) 0 −0.0006 (12) 0
Cl2 0.0641 (19) 0.090 (3) 0.0611 (18) 0 0.0195 (15) 0
N1 0.024 (3) 0.050 (5) 0.050 (5) 0 0.002 (3) 0
C1 0.060 (7) 0.097 (12) 0.045 (6) 0 0.017 (5) 0
C2 0.038 (5) 0.065 (8) 0.042 (5) 0 −0.006 (4) 0
C3 0.047 (6) 0.098 (12) 0.047 (6) 0 −0.008 (5) 0
C4 0.036 (6) 0.098 (13) 0.086 (10) 0 0.002 (6) 0
C5 0.045 (6) 0.075 (10) 0.078 (9) 0 0.026 (6) 0
C6 0.040 (5) 0.050 (6) 0.053 (6) 0 0.020 (4) 0
C7 0.057 (7) 0.088 (11) 0.074 (9) 0 0.037 (7) 0

Geometric parameters (Å, °)

Au1—N1 2.030 (8) C2—C3 1.392 (15)
Au1—N1i 2.030 (8) C3—C4 1.35 (2)
Au2—Cl1i 2.280 (3) C3—H3 0.93
Au2—Cl1 2.280 (3) C4—C5 1.38 (2)
Au2—Cl2 2.286 (4) C4—H4 0.93
Au2—Cl2i 2.286 (4) C5—C6 1.381 (17)
N1—C2 1.360 (15) C5—H5 0.93
N1—C6 1.370 (14) C6—C7 1.463 (18)
C1—C2 1.479 (18) C7—H7A 0.96
C1—H1A 0.96 C7—H7B 0.96
C1—H1B 0.96
N1—Au1—N1i 180.0 (3) C4—C3—C2 118.8 (12)
Cl1i—Au2—Cl1 180.00 (8) C4—C3—H3 120.6
Cl1i—Au2—Cl2 90.05 (14) C2—C3—H3 120.6
Cl1—Au2—Cl2 89.95 (14) C3—C4—C5 121.4 (12)
Cl1i—Au2—Cl2i 89.95 (14) C3—C4—H4 119.3
Cl1—Au2—Cl2i 90.05 (14) C5—C4—H4 119.3
Cl2—Au2—Cl2i 180.00 (17) C4—C5—C6 119.0 (12)
C2—N1—C6 119.6 (9) C4—C5—H5 120.5
C2—N1—Au1 120.7 (8) C6—C5—H5 120.5
C6—N1—Au1 119.7 (7) N1—C6—C5 120.3 (11)
C2—C1—H1A 109.5 N1—C6—C7 117.4 (10)
C2—C1—H1B 109.5 C5—C6—C7 122.3 (11)
H1A—C1—H1B 109.5 C6—C7—H7A 109.5
N1—C2—C3 120.9 (12) C6—C7—H7B 109.5
N1—C2—C1 118.2 (10) H7A—C7—H7B 109.5
C3—C2—C1 120.9 (11)
C6—N1—C2—C3 0.000 (4) C3—C4—C5—C6 0.000 (5)
Au1—N1—C2—C3 180.000 (4) C2—N1—C6—C5 0.000 (4)
C6—N1—C2—C1 180.000 (4) Au1—N1—C6—C5 180.000 (3)
Au1—N1—C2—C1 0.000 (3) C2—N1—C6—C7 180.000 (3)
N1—C2—C3—C4 0.000 (6) Au1—N1—C6—C7 0.000 (3)
C1—C2—C3—C4 180.000 (5) C4—C5—C6—N1 0.000 (4)
C2—C3—C4—C5 0.000 (6) C4—C5—C6—C7 180.000 (4)

Symmetry codes: (i) −x, y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···Cl1ii 0.93 2.77 3.572 (14) 145

Symmetry codes: (ii) −x+1/2, y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2150).

References

  1. Abbate, F., Orioli, P., Bruni, B., Marcon, G. & Messori, L. (2000). Inorg. Chim. Acta, 311, 1–5.
  2. Adams, H. N. & Strähle, J. (1982). Z. Anorg. Allg. Chem.485, 65–80.
  3. Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1156–m1157. [DOI] [PMC free article] [PubMed]
  4. Amani, V., Rahimi, R. & Khavasi, H. R. (2008). Acta Cryst. E64, m1143–m1144. [DOI] [PMC free article] [PubMed]
  5. Bjernemose, J. K., Raithby, P. R. & Toftlund, H. (2004). Acta Cryst. E60, m1719–m1721.
  6. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  8. Hayoun, R., Zhong, D. K., Rheingold, A. L. & Doerrer, L. H. (2006). Inorg. Chem.45, 6120–6122. [DOI] [PubMed]
  9. Hojjat Kashani, L., Yousefi, M., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m840–m841. [DOI] [PMC free article] [PubMed]
  10. Hollis, L. S. & Lippard, S. J. (1983). J. Am. Chem. Soc.105, 4293–4299.
  11. McInnes, E. J. L., Welch, A. J. & Yellowlees, L. J. (1995). Acta Cryst. C51, 2023–2025.
  12. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Yıldırım, S. Ö., Akkurt, M., Safari, N., Amani, V., McKee, V., Abedi, A. & Khavasi, H. R. (2008). Acta Cryst. E64, m1189–m1190. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808027876/hy2150sup1.cif

e-64-m1237-sup1.cif (12.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027876/hy2150Isup2.hkl

e-64-m1237-Isup2.hkl (67KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES