Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 24;64(Pt 10):o1991. doi: 10.1107/S160053680803016X

N-(4-Chloro­phen­yl)maleimide

Rodolfo Moreno-Fuquen a,*, Zulay Pardo-Botero a, Javier Ellena b
PMCID: PMC2959239  PMID: 21201190

Abstract

In the title compound, C10H6ClNO2, the dihedral angle between the benzene and maleimide rings is 47.54 (9)°. Mol­ecules form centrosymmetric dimers through C—H⋯O hydrogen bonds, resulting in rings of graph-set motif R 2 2(8) and chains in the [100] direction. Mol­ecules are also linked by C—H⋯Cl hydrogen bonds along [001]. In this same direction, mol­ecules are connected to other neighbouring mol­ecules by C—H⋯O hydrogen bonds, forming edge-fused R 4 4(24) rings.

Related literature

For general background, see: Etter (1990); Howell & Zhang (2006); Miller et al. (2000, 2001); Moreno-Fuquen, Valencia, Abonia, Kennedy & Graham (2003); Nardelli (1995); Sarma & Desiraju (1986). graphic file with name e-64-o1991-scheme1.jpg

Experimental

Crystal data

  • C10H6ClNO2

  • M r = 207.61

  • Monoclinic, Inline graphic

  • a = 10.6504 (7) Å

  • b = 3.8589 (2) Å

  • c = 22.0308 (14) Å

  • β = 100.741 (3)°

  • V = 889.57 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 150 K

  • 0.18 × 0.04 × 0.03 mm

Data collection

  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO; Otwinowski & Minor, 1997) T min = 0.951, T max = 0.982

  • 11729 measured reflections

  • 1646 independent reflections

  • 1231 reflections with I > 2σ(I)

  • R int = 0.089

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.116

  • S = 1.07

  • 1646 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 2000); cell refinement: DENZO; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST95 (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803016X/fj2150sup1.cif

e-64-o1991-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803016X/fj2150Isup2.hkl

e-64-o1991-Isup2.hkl (80.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.93 2.58 3.493 (3) 169
C2—H2⋯O1ii 0.93 2.77 3.659 (3) 161
C5—H5⋯O2iii 0.93 2.58 3.319 (3) 137
C9—H9⋯O2iv 0.93 2.64 3.326 (3) 131
C9—H9⋯Cl1v 0.93 2.89 3.551 (3) 129

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

RMF dedicates this work to the memory of Professor J. Valderrama. RMF is grateful to the Instituto de Química Física Rocasolano, CSIC, Spain, for the use of the license of Cambridge Structural Database System (Allen, 2002). This work was partially supported by the Universidad del Valle, Colombia.

supplementary crystallographic information

Comment

It is known that cyclic unsaturated dicarbonyl compounds such as N-substituted maleimides can be used in free-radical-initiated polymerization processes upon exposure to light (Howell & Zhang, 2006). In order to study the possible application of N-(p-chlorophenylmaleimide) (I) in polymerization processes, and to explain its hydrogen bonding patterns, the synthesis and the study of the crystal structure are reported in this work. N-(p-nitrophenylmaleimide) (4NPMI) (Moreno-Fuquen et al., 2003), N-(o-chlorophenylmaleimide) (2ClPMI) systems (Miller et al., 2001) show a close analogy to the title compounds and are thus employed as a basic reference for comparison. Perspective view of (I), showing the atomic numbering scheme, can be seen in Fig.1. In the arylmaleimide systems the value of the dihedral angle between the benzene and imidic rings influences on the polimerization process, and the presence of different substituents in the benzene ring change the value of this angle (Miller et al., 2000). The photochemical properties of arylmaleimide systems depend on the value of this angle. The dihedral angle between benzene and maleimide planes is 42.98 (5)° for 4NPMI, 66.10 (4) ° for 2ClPMI and 47.54 (9)° for (I). The chlorine atoms, which are pending on the aromatic nucleus, tend to steer the crystal structure to a state characterized by a short axis (Sarma & Desiraju, 1986). For (I), the b axis has a small value [3.8589 (2) Å] and a Cl···Cl nonbonded contact is observed at the same distance. The crystal structure of (I) is stabilized by weak intermolecular C—H···O and C—H···Cl hydrogen-bonds (Nardelli, 1995) (Table 1). The molecules of (I) are linked into a three-dimensional framework by a combination of C—H···O and C—H···Cl hydrogen bonds. The formation of the framework can be explained in terms of three-one substructures. In the first substructure, atom C8 in the molecule at (x,y,z) acts as a hydrogen-bond donor to maleimidic atom O1 in the molecule at (-x,1 - y,1 - z) and atom C9 in the molecule at (x,y,z) acts as a hydrogen-bond donor to maleimidic atom O2 in the molecule at (1 - x,1 - y,1 - z). Both interactions generate dimers containing centrosymmetric rings with graph motif R22(8) (Etter, 1990) (Fig. 2, supp. material). These dimers are linked by C(5) chains which are running parallel to [100] direction. In the second substructure, atom C9 in the molecule at (x,1/2 - y,-1/2 + z) acts as a hydrogen-bond donor to atom Cl1 in the molecule at (x,y,z), similarly, atom C5 in the molecule at (x,y,z) acts as a hydrogen-bond donor to maleimidic atom O2 in the molecule at (x,1 + y,z) so generating a chain of edge-fused R44(24) rings along [001] (Fig. 3, supp. material). The third one-dimensional substructure is built by C—H···O hydrogen bonds. Atom C2 in the molecule at (x,y,z) acts as hydrogen bond donor to maleimidic O1 in the molecule at (-x,-1/2 + y,1/2 - z) so generating a C(7) chains in the [010] direction (Fig.4, supp. material). The low value of the dihedral angle between benzene and maleimide planes, allows to conclude that (I) is not a good candidate to use in a photopolymerization process.

Experimental

All reagents (purchased from Aldrich) and solvents were used as received. Column chromatography was performed using silica gel H60 to purify the intermediates and final products. Thin layer chromatography (TLC) was used to confirm the structure of the individual compounds.

Refinement

The space group P 21/c for (I) was uniquely assigned from the systematic absences. All H-atoms were located from difference maps and then treated as riding atoms [C—H= 0.93Å and Uiso(H)= 1.2Ueq(C)].

Figures

Fig. 1.

Fig. 1.

An ORTEP-3 (Farrugia, 1997) plot of the (I) compound, with the atomic labelling scheme. The shapes of the ellipsoids correspond to 50% probability contours of atomic displacement and, for the sake of clarity, H atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I) showing the formation of centrosymmetric R22(8) dimmers rings and C(4) chains which are running parallel to the [100] direction. [Symmetry codes: (i) 1 + x,y + z; (ii)1 - x,1 - y,1 - z; (iii) -x,1 - y,1 - z].

Fig. 3.

Fig. 3.

Part of the crystal structure of (I) showing the formation of C(9) chains and edge-fused R44(24) rings along [001]. [Symmetry codes: (i) x,1/2 - y,-1/2 + z; (ii) x,1 + y,z; (iii) x,y,-1 + z; (iv) x,1 + y,-1 + z; (v) x,3/2 - y,-1/2 + z; (vi) x,1/2 - y,1/2 + z; (vii) x,1/2 - y,1/2 + z].

Fig. 4.

Fig. 4.

Part of the crystal structure of (I) showing the formation of C(7) chains along [010]. [Symmetry codes: (i) x,-1 + y,z; (ii) -x,-1/2 + y,1/2 + z; (iii) -x,1/2 + y,1/2 - z; (iv) x,1 + y,z].

Fig. 5.

Fig. 5.

The formation of the title compound.

Crystal data

C10H6ClNO2 F(000) = 424
Mr = 207.61 Dx = 1.550 Mg m3
Monoclinic, P21/c Melting point: 384(1) K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 10.6504 (7) Å Cell parameters from 11729 reflections
b = 3.8589 (2) Å θ = 2.9–25.4°
c = 22.0308 (14) Å µ = 0.40 mm1
β = 100.741 (3)° T = 150 K
V = 889.57 (9) Å3 Needle, pale-yellow
Z = 4 0.18 × 0.04 × 0.03 mm

Data collection

Bruker–Nonius KappaCCD diffractometer 1646 independent reflections
Radiation source: fine-focus sealed tube 1231 reflections with I > 2σ(I)
graphite Rint = 0.089
φ and ω scans θmax = 25.4°, θmin = 3.0°
Absorption correction: multi-scan (DENZO; Otwinowski & Minor, 1997) h = −12→12
Tmin = 0.951, Tmax = 0.982 k = −4→4
11729 measured reflections l = −24→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.491P] where P = (Fo2 + 2Fc2)/3
1646 reflections (Δ/σ)max < 0.001
128 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.26337 (8) 0.6828 (2) 0.13972 (3) 0.0486 (3)
O1 0.04581 (16) 0.6461 (5) 0.40894 (8) 0.0419 (5)
O2 0.45773 (15) 0.2532 (5) 0.43624 (8) 0.0342 (5)
N1 0.25175 (18) 0.4677 (5) 0.40446 (9) 0.0278 (5)
C1 0.2590 (2) 0.6168 (6) 0.21732 (11) 0.0303 (6)
C2 0.1564 (2) 0.4474 (7) 0.23409 (11) 0.0314 (6)
H2 0.0899 0.3657 0.2040 0.038*
C3 0.1537 (2) 0.4004 (6) 0.29608 (11) 0.0282 (6)
H3 0.0852 0.2870 0.3081 0.034*
C4 0.2542 (2) 0.5240 (6) 0.34041 (11) 0.0269 (6)
C5 0.3567 (2) 0.6933 (6) 0.32329 (12) 0.0283 (6)
H5 0.4237 0.7748 0.3532 0.034*
C6 0.3585 (2) 0.7399 (6) 0.26132 (12) 0.0303 (6)
H6 0.4266 0.8541 0.2492 0.036*
C7 0.1462 (2) 0.5170 (7) 0.43329 (12) 0.0323 (6)
C8 0.1852 (2) 0.3901 (7) 0.49762 (11) 0.0340 (6)
H8 0.1336 0.3862 0.5273 0.041*
C9 0.3057 (2) 0.2833 (7) 0.50601 (12) 0.0317 (6)
H9 0.3524 0.1958 0.5427 0.038*
C10 0.3538 (2) 0.3260 (6) 0.44722 (11) 0.0291 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0730 (6) 0.0459 (5) 0.0305 (4) 0.0071 (4) 0.0186 (4) 0.0053 (3)
O1 0.0297 (10) 0.0600 (13) 0.0376 (11) 0.0126 (9) 0.0101 (8) 0.0056 (9)
O2 0.0285 (10) 0.0420 (11) 0.0320 (10) 0.0049 (8) 0.0055 (8) −0.0004 (8)
N1 0.0251 (11) 0.0339 (12) 0.0249 (11) 0.0031 (9) 0.0061 (9) 0.0013 (9)
C1 0.0401 (15) 0.0260 (14) 0.0262 (14) 0.0073 (11) 0.0102 (11) 0.0018 (11)
C2 0.0325 (14) 0.0296 (14) 0.0304 (15) 0.0052 (11) 0.0009 (11) −0.0018 (11)
C3 0.0242 (13) 0.0275 (14) 0.0337 (14) 0.0016 (10) 0.0074 (11) 0.0025 (11)
C4 0.0274 (13) 0.0262 (13) 0.0277 (13) 0.0047 (10) 0.0064 (10) 0.0008 (10)
C5 0.0278 (13) 0.0252 (13) 0.0316 (14) 0.0035 (10) 0.0045 (10) −0.0025 (11)
C6 0.0301 (13) 0.0260 (14) 0.0382 (16) 0.0034 (11) 0.0151 (12) 0.0020 (11)
C7 0.0286 (14) 0.0368 (15) 0.0329 (15) 0.0005 (12) 0.0097 (11) −0.0052 (12)
C8 0.0361 (15) 0.0392 (16) 0.0288 (14) −0.0014 (12) 0.0121 (11) −0.0005 (12)
C9 0.0346 (15) 0.0338 (14) 0.0260 (14) −0.0009 (12) 0.0036 (11) −0.0013 (11)
C10 0.0311 (14) 0.0261 (13) 0.0292 (14) 0.0017 (11) 0.0036 (11) −0.0025 (11)

Geometric parameters (Å, °)

Cl1—C1 1.738 (2) C3—H3 0.9300
O1—C7 1.210 (3) C4—C5 1.384 (3)
O2—C10 1.209 (3) C5—C6 1.380 (4)
N1—C7 1.404 (3) C5—H5 0.9300
N1—C10 1.410 (3) C6—H6 0.9300
N1—C4 1.433 (3) C7—C8 1.484 (4)
C1—C6 1.380 (4) C8—C9 1.327 (4)
C1—C2 1.381 (4) C8—H8 0.9300
C2—C3 1.383 (3) C9—C10 1.489 (4)
C2—H2 0.9300 C9—H9 0.9300
C3—C4 1.392 (3)
C7—N1—C10 109.5 (2) C4—C5—H5 120.4
C7—N1—C4 126.0 (2) C1—C6—C5 120.0 (2)
C10—N1—C4 124.3 (2) C1—C6—H6 120.0
C6—C1—C2 121.1 (2) C5—C6—H6 120.0
C6—C1—Cl1 118.86 (19) O1—C7—N1 124.8 (2)
C2—C1—Cl1 120.01 (19) O1—C7—C8 128.8 (2)
C1—C2—C3 119.3 (2) N1—C7—C8 106.4 (2)
C1—C2—H2 120.4 C9—C8—C7 109.1 (2)
C3—C2—H2 120.4 C9—C8—H8 125.5
C2—C3—C4 119.5 (2) C7—C8—H8 125.5
C2—C3—H3 120.2 C8—C9—C10 109.0 (2)
C4—C3—H3 120.2 C8—C9—H9 125.5
C5—C4—C3 120.9 (2) C10—C9—H9 125.5
C5—C4—N1 120.0 (2) O2—C10—N1 125.3 (2)
C3—C4—N1 119.1 (2) O2—C10—C9 128.7 (2)
C6—C5—C4 119.2 (2) N1—C10—C9 106.0 (2)
C6—C5—H5 120.4
C6—C1—C2—C3 0.0 (4) C10—N1—C7—O1 177.3 (3)
Cl1—C1—C2—C3 −179.27 (18) C4—N1—C7—O1 −7.5 (4)
C1—C2—C3—C4 −0.1 (4) C10—N1—C7—C8 −1.2 (3)
C2—C3—C4—C5 0.0 (4) C4—N1—C7—C8 174.0 (2)
C2—C3—C4—N1 −178.7 (2) O1—C7—C8—C9 −177.0 (3)
C7—N1—C4—C5 136.1 (3) N1—C7—C8—C9 1.5 (3)
C10—N1—C4—C5 −49.4 (3) C7—C8—C9—C10 −1.1 (3)
C7—N1—C4—C3 −45.1 (3) C7—N1—C10—O2 179.8 (2)
C10—N1—C4—C3 129.4 (3) C4—N1—C10—O2 4.4 (4)
C3—C4—C5—C6 0.1 (4) C7—N1—C10—C9 0.6 (3)
N1—C4—C5—C6 178.9 (2) C4—N1—C10—C9 −174.7 (2)
C2—C1—C6—C5 0.2 (4) C8—C9—C10—O2 −178.8 (3)
Cl1—C1—C6—C5 179.46 (18) C8—C9—C10—N1 0.3 (3)
C4—C5—C6—C1 −0.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8···O1i 0.93 2.58 3.493 (3) 169
C2—H2···O1ii 0.93 2.77 3.659 (3) 161
C5—H5···O2iii 0.93 2.58 3.319 (3) 137
C9—H9···O2iv 0.93 2.64 3.326 (3) 131
C9—H9···Cl1v 0.93 2.89 3.551 (3) 129

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, y−1/2, −z+1/2; (iii) x, y+1, z; (iv) −x+1, −y, −z+1; (v) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2150).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Etter, M. (1990). Acc. Chem. Res.23, 120–126.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Howell, B. & Zhang, J. (2006). J. Therm. Anal. Calorim.83, 83–86.
  5. Miller, C. W., Hoyle, C. E., Valente, E. J., Zobkowski, J. D. & Jönsson, E. S. (2000). J. Chem. Cryst.30, 9, 563–571.
  6. Miller, C. W., Jönsson, E. S., Hoyle, C. E., Viswanathan, K. & Valente, E. J. (2001). J. Phys. Chem. B, 105, 2707–2717.
  7. Moreno-Fuquen, R., Valencia, H., Abonia, R., Kennedy, A. R. & Graham, D. (2003). Acta Cryst. E59, o1717–o1718.
  8. Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  9. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  10. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  11. Sarma, J. A. R. P. & Desiraju, G. R. (1986). Acc. Chem. Res.19, 222–228.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803016X/fj2150sup1.cif

e-64-o1991-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803016X/fj2150Isup2.hkl

e-64-o1991-Isup2.hkl (80.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES