Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 6;64(Pt 10):o1865–o1866. doi: 10.1107/S1600536808027062

8-Chloro-5-(4-phenethylpiperazin-1-­yl)pyrido[2,3-b][1,5]benzoxazepine

Ben Capuano a, Ian T Crosby a, Craig M Forsyth b,*, Edward J Lloyd a, Amelia Vom a, Elizabeth Yuriev a
PMCID: PMC2959242  PMID: 21201082

Abstract

As part of an anti­psychotic drug discovery program, we report the crystal structure of the title compound, C24H23ClN4O. The mol­ecule has a tricyclic framework with a characteristic buckled V-shaped pyridobenzoxazepine unit, with the central seven-membered heterocycle in a boat configuration. The piperazine ring displays a chair conformation with the 2-phenyl-ethyl substituent assuming an equatorial orientation. There are two crystallographically independent, but virtually identical, mol­ecules in the asymmetric unit.

Related literature

For related literature see: Andreasen et al. (1994, 2000); Dupont & Liégeois (2003); Petcher & Weber (1976); Capuano et al. (1999, 2002, 2003, 2006); Gerlach (1991); Gerson & Meltzer (1992); Liégeois et al. (1994, 1997, 2000); Mouithys-Mickalad et al. (2001); Vom (2006).graphic file with name e-64-o1865-scheme1.jpg

Experimental

Crystal data

  • C24H23ClN4O

  • M r = 418.91

  • Triclinic, Inline graphic

  • a = 9.9253 (2) Å

  • b = 15.0549 (3) Å

  • c = 15.9996 (3) Å

  • α = 107.774 (2)°

  • β = 95.487 (1)°

  • γ = 108.783 (1)°

  • V = 2104.93 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 123 (2) K

  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 25726 measured reflections

  • 9532 independent reflections

  • 6353 reflections with I > 2σ(I)

  • R int = 0.084

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.158

  • S = 1.00

  • 9532 reflections

  • 541 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: COLLECT (Bruker, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: CIFTAB (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808027062/fj2144sup1.cif

e-64-o1865-sup1.cif (29.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027062/fj2144Isup2.hkl

e-64-o1865-Isup2.hkl (466.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge support from Monash University and the Australian Research Council

supplementary crystallographic information

Comment

Schizophrenia (Gr., "split mind") is a debilitating mental illness that severely impairs an individual's perception of reality, and damages a variety of emotional, behavioural and cognitive functions that we regard as specifically human (Andreasen et al., 2000). This devastating disease afflicts approximately 1% of the world population thereby making it the most common form of psychosis. The symptoms of schizophrenia are divided into two distinct classifications; positive (delusions and hallucinations) and negative (social and emotional withdrawal) (Andreasen et al., 1994). Antipsychotic drugs are divided into two clinical classes; typical (treat the positive symptoms and have a propensity to induce movement disorders) and atypical (treat both positive and negative symptoms, as well as associated cognitive deficits, and are virtually devoid of movement disorders) (Gerlach, 1991).

Clozapine is an atypical antipsychotic drug far superior in efficacy against treatment-resistant schizophrenia compared to other clinically available therapeutics. However, clozapine has been found to induce the blood disorder agranulocytosis that can, in some cases, be fatal. The synthesis component of this drug discovery programme is a continuation of previous work done in our research group (Capuano et al., 2002, 2003) and is based on the structural hybridisation of two common antipsychotics, namely clozapine and haloperidol. The resulting structural series contains a tricyclic motif attached to piperazine, with an additional π-system anchored to the distal nitrogen atom of the piperazine ring system by a suitable spacer (Capuano et al., 2003). The NH of the central seven-membered ring of clozapine has been isosterically replaced with oxygen, and the adjacent benzene ring replaced with a pyridine ring. This structural class, known as 'pyridobenzoxazepine', has been previously investigated by Liegeois et al., with particular interest to the compound 8-chloro-5-(4-methylpiperazin-1-yl)-11H-pyrido[2,3-b] [1,5]benzoxazepine (also known as JL13), which is currently being clinically evaluated. This alternative tricyclic nucleus is predicted to enhance aqueous solubility and bioavailability compared to previously published compounds. Additionally, isosteric replacement of NH for O in structurally related compounds has been shown to significantly reduce their oxidative sensitivity towards neutrophils, and therefore lessen their hematotoxic potential (Mouithys-Mickalad et al., 2001; Liegeois et al., 2000; Liegeois et al., 1997).

Our interest in the crystal structure of (I) was to examine the geometries of the piperazine ring and the tricyclic nucleus relative to clozapine. The crystal contains two crystallographically independent, but virtually identical molecules. The title compound (I) exhibits the characteristic buckled conformation of the pyridobenzoxazepine nucleus with the central seven-membered heterocycle in a classical boat conformation. The dihedral angle between the planes of the aromatic rings (defined as the obtuse angle subtended by the plane normals) are 112.40 (5)° (molecule 1) and 109.06 (6)° (molecule 2), which are comparable to 114° observed for JL13 (Dupont & Liégeois, 2003) and 115° observed for the prototypical atypical antipsychotic, clozapine (Petcher & Weber, 1976). The dihedral angles between the plane of the four C atoms in the piperazine ring and the chloro-substituted and pyridyl rings are 25.5 (1)° and 43.43 (6)° (molecule 1) and 26.39 (6)° and 45.42 (7)°, respectively (for clozapine, the angles are 40.5° and 31.8°, respectively (Petcher & Weber, 1976)); a consequence of the planarity of the piperazine nitrogen in the amidine moiety and the partial double bond character of N1—C12 (1.297 (3) Å and N5—C36 1.301 (2) Å. The piperazine ring adopts an almost perfect chair conformation with the phenethyl substituent assuming an equatorial orientation, by virtue of the sp2-like nature of the piperazine nitrogen atoms. No significant interactions between molecules of the title compound were observed.

Experimental

The title compound (I) was synthesized (Vom, 2006) from the tricyclic lactam, 8-chlorobenzo[b]pyrido[3,2-f][1,4]oxazepin- 5(6H)-one (Liegeois et al., 1994), and the monosubstituted piperazine, 1-phenethylpiperazine (Capuano et al., 2003), in the presence of a Lewis acid, (TiCl4). A stirred solution of 1-phenethylpiperazine (1.00 g, 5.28 mmol) in anhydrous 1,4-dioxane (5 ml) under nitrogen was treated with a solution of titanium tetrachloride in dry toluene (1M, 1.1 ml, 1.1 mmol). The mixture was warmed to 50–55 °C to which a hot solution of the tricyclic lactam (250 mg, 1.01 mmol) in anhydrous dioxane (20 ml) was added. The reaction mixture was heated at reflux for 4 h after which time it was then cooled and evaporated to dryness in vacuo. The resulting yellow/brown residue was partitioned between sodium hydroxide solution (1M, 50 mL) and ethyl acetate (50 ml). The organic layer was removed and the aqueous phase was further extracted with ethyl acetate (3x50 ml). The combined organic fractions were washed with water (50 ml), dried over anhydrous sodium sulfate, and then evaporated to dryness. The resulting residue was purified by flash chromatography (ethyl acetate:methanol 97.5:2.5) and the major product evaporated to dryness. The product was recrystallized from dichloromethane/hexane as pale yellow prisms (216 mg, 51%), which were suitable for X-ray diffraction studies (mp 428 K (softens) 433 K (melts)). IR νmax 1599, 1583, 1549 cm-1. 1H NMR (CDCl3) δ 2.70–2.75 (6H, m, H3', H5', H2''), 2.86–2.91 (2H, m, H1''), 3.64 (4H, br s, H2',H6'), 6.97 (1H, dd, J = 8.5, 2.5 Hz,H9), 7.14–7.32 (8H, m, H3, H7, H10, H2''', H3''', H4''', H5''', H6'''), 7.73 (1H, dd, J 7.5, 2.0 Hz, H4), 8.43 (1H, dd, J 5.0, 2.0 Hz, H2). 13C NMR (CDCl3) δ 33.0 (CH2), 46.9 (CH2), 52.7 (CH2), 60.1 (CH2), 117.6 (Cq), 121.7 (CH), 122.3 (CH), 124.5 (CH), 126.4 (CH), 126.7 (CH), 128.6 (2 x CH), 131.0 (Cq), 139.5 (Cq), 140.7 (Cq), 148.4 (Cq), 151.6 (CH), 157.9 (Cq), 164.2 (Cq). ESI MS (20 V) m/z 421 (M[37Cl]H+, 36%), 419 (M[35Cl]H+, 100%). ESI high resolution MS: Found m/z 419.1630. Calcd. for C24H23ClN4O: m/z 419.1633.

Refinement

All H atoms for the primary molecules were initially located in the difference Fourier map but were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–1.00 Å and Uiso(H) = 1.2–1.5 Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular diagram of one of the crystallographically independent molecules of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C24H23ClN4O Z = 4
Mr = 418.91 F(000) = 880
Triclinic, P1 Dx = 1.322 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.9253 (2) Å Cell parameters from 25726 reflections
b = 15.0549 (3) Å θ = 1.5–27.5°
c = 15.9996 (3) Å µ = 0.21 mm1
α = 107.774 (2)° T = 123 K
β = 95.487 (1)° Prismatic, pale yellow
γ = 108.783 (1)° 0.30 × 0.25 × 0.20 mm
V = 2104.93 (8) Å3

Data collection

Nonius KappaCCD diffractometer 6353 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.084
graphite θmax = 27.5°, θmin = 1.5°
1 deg frames in φ and ω scans h = −12→12
25726 measured reflections k = −19→19
9532 independent reflections l = −16→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.086P)2] where P = (Fo2 + 2Fc2)/3
9532 reflections (Δ/σ)max = 0.002
541 parameters Δρmax = 0.48 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.43755 (6) 1.38055 (4) 1.08930 (3) 0.03010 (15)
Cl2 0.12302 (6) 0.14811 (4) 0.23248 (3) 0.03132 (15)
O1 0.82246 (16) 1.34506 (11) 0.83292 (9) 0.0255 (3)
O2 −0.04349 (15) 0.18117 (10) 0.58032 (8) 0.0248 (3)
N1 0.55743 (18) 1.17733 (13) 0.80785 (10) 0.0223 (4)
N2 1.02695 (19) 1.32173 (13) 0.88624 (11) 0.0265 (4)
N3 0.59265 (18) 1.05244 (13) 0.69781 (10) 0.0245 (4)
N4 0.47574 (18) 0.86689 (13) 0.54748 (10) 0.0252 (4)
N5 0.05941 (18) 0.35809 (13) 0.53319 (10) 0.0224 (4)
N6 0.13408 (19) 0.17182 (13) 0.67722 (10) 0.0245 (4)
N7 0.10986 (18) 0.48198 (12) 0.67195 (10) 0.0221 (4)
N8 0.11770 (18) 0.67465 (12) 0.77966 (10) 0.0219 (4)
C1 0.6055 (2) 1.26737 (16) 0.88188 (12) 0.0217 (4)
C2 0.5157 (2) 1.27768 (16) 0.94409 (12) 0.0230 (4)
H2 0.4327 1.2217 0.9400 0.028*
C3 0.5486 (2) 1.36993 (16) 1.01146 (12) 0.0238 (5)
C4 0.6674 (2) 1.45349 (16) 1.01968 (13) 0.0279 (5)
H4 0.6862 1.5163 1.0654 0.034*
C5 0.7592 (2) 1.44418 (16) 0.95978 (13) 0.0276 (5)
H5 0.8423 1.5005 0.9646 0.033*
C6 0.7283 (2) 1.35212 (16) 0.89302 (12) 0.0230 (4)
C7 0.8879 (2) 1.28001 (16) 0.84410 (12) 0.0228 (4)
C8 1.0898 (2) 1.25901 (17) 0.89859 (13) 0.0280 (5)
H8 1.1890 1.2871 0.9293 0.034*
C9 1.0194 (2) 1.15579 (17) 0.86940 (12) 0.0260 (5)
H9 1.0689 1.1145 0.8800 0.031*
C10 0.8740 (2) 1.11413 (16) 0.82406 (12) 0.0226 (4)
H10 0.8224 1.0436 0.8029 0.027*
C11 0.8060 (2) 1.17713 (15) 0.81026 (12) 0.0209 (4)
C12 0.6466 (2) 1.13941 (15) 0.77075 (12) 0.0208 (4)
C13 0.6737 (2) 1.03001 (16) 0.62703 (12) 0.0262 (5)
H13A 0.7797 1.0629 0.6530 0.031*
H13B 0.6506 1.0567 0.5804 0.031*
C14 0.4348 (2) 1.00197 (16) 0.66368 (14) 0.0295 (5)
H14A 0.4021 1.0285 0.6193 0.035*
H14B 0.3838 1.0148 0.7137 0.035*
C15 0.6332 (2) 0.91819 (16) 0.58523 (13) 0.0266 (5)
H15A 0.6870 0.9036 0.5370 0.032*
H15B 0.6617 0.8924 0.6313 0.032*
C16 0.3981 (2) 0.88978 (16) 0.61953 (13) 0.0277 (5)
H16A 0.4238 0.8630 0.6655 0.033*
H16B 0.2919 0.8558 0.5946 0.033*
C17 0.4348 (2) 0.75783 (16) 0.50652 (13) 0.0283 (5)
H17A 0.3273 0.7252 0.4932 0.034*
H17B 0.4753 0.7336 0.5502 0.034*
C18 0.4887 (3) 0.72652 (17) 0.42041 (14) 0.0345 (6)
H18A 0.4413 0.7450 0.3746 0.041*
H18B 0.5951 0.7634 0.4323 0.041*
C19 0.4567 (2) 0.61571 (17) 0.38432 (13) 0.0270 (5)
C20 0.5436 (2) 0.57522 (18) 0.42136 (13) 0.0321 (5)
H20 0.6227 0.6183 0.4708 0.039*
C21 0.5179 (3) 0.47376 (19) 0.38809 (15) 0.0398 (6)
H21 0.5809 0.4482 0.4133 0.048*
C22 0.4013 (3) 0.40982 (19) 0.31860 (17) 0.0458 (7)
H22 0.3828 0.3399 0.2961 0.055*
C23 0.3108 (3) 0.4477 (2) 0.28147 (15) 0.0447 (7)
H23 0.2294 0.4037 0.2338 0.054*
C24 0.3391 (2) 0.55034 (19) 0.31401 (14) 0.0367 (6)
H24 0.2773 0.5760 0.2878 0.044*
C25 0.0493 (2) 0.26283 (15) 0.47717 (12) 0.0209 (4)
C26 0.0878 (2) 0.25284 (16) 0.39394 (12) 0.0233 (4)
H26 0.1293 0.3107 0.3789 0.028*
C27 0.0653 (2) 0.15853 (16) 0.33345 (12) 0.0235 (5)
C28 0.0012 (2) 0.07163 (16) 0.35102 (13) 0.0251 (5)
H28 −0.0174 0.0076 0.3073 0.030*
C29 −0.0354 (2) 0.08040 (16) 0.43400 (12) 0.0238 (5)
H29 −0.0781 0.0221 0.4483 0.029*
C30 −0.0094 (2) 0.17435 (15) 0.49555 (12) 0.0226 (4)
C31 0.0867 (2) 0.22962 (16) 0.64466 (12) 0.0225 (4)
C32 0.2615 (2) 0.21837 (17) 0.73820 (13) 0.0273 (5)
H32 0.2987 0.1789 0.7629 0.033*
C33 0.3407 (2) 0.32015 (16) 0.76676 (12) 0.0244 (5)
H33 0.4299 0.3497 0.8100 0.029*
C34 0.2875 (2) 0.37851 (16) 0.73110 (12) 0.0222 (4)
H34 0.3399 0.4488 0.7495 0.027*
C35 0.1563 (2) 0.33270 (15) 0.66807 (12) 0.0205 (4)
C36 0.0998 (2) 0.38808 (15) 0.62012 (12) 0.0211 (4)
C37 0.0757 (2) 0.50015 (15) 0.76178 (12) 0.0235 (5)
H37A 0.1046 0.4567 0.7895 0.028*
H37B −0.0305 0.4830 0.7564 0.028*
C38 0.0800 (2) 0.54901 (15) 0.62959 (12) 0.0246 (5)
H38A −0.0260 0.5346 0.6170 0.029*
H38B 0.1126 0.5384 0.5720 0.029*
C39 0.1557 (2) 0.60878 (15) 0.82070 (12) 0.0238 (5)
H39A 0.1299 0.6206 0.8803 0.029*
H39B 0.2621 0.6246 0.8295 0.029*
C40 0.1610 (2) 0.65674 (15) 0.69272 (12) 0.0230 (4)
H40A 0.2672 0.6715 0.7023 0.028*
H40B 0.1406 0.7027 0.6649 0.028*
C41 0.1924 (2) 0.78003 (15) 0.83789 (12) 0.0251 (5)
H41A 0.1826 0.8231 0.8035 0.030*
H41B 0.2974 0.7935 0.8554 0.030*
C42 0.1336 (2) 0.80871 (16) 0.92268 (13) 0.0273 (5)
H42A 0.0302 0.7997 0.9056 0.033*
H42B 0.1379 0.7633 0.9556 0.033*
C43 0.2189 (2) 0.91604 (16) 0.98384 (12) 0.0245 (5)
C44 0.3466 (2) 0.93923 (17) 1.04455 (13) 0.0263 (5)
H44 0.3809 0.8875 1.0460 0.032*
C45 0.4243 (2) 1.03739 (17) 1.10308 (13) 0.0286 (5)
H45 0.5102 1.0520 1.1449 0.034*
C46 0.3771 (2) 1.11341 (17) 1.10059 (13) 0.0313 (5)
H46 0.4300 1.1803 1.1407 0.038*
C47 0.2520 (2) 1.09162 (17) 1.03929 (13) 0.0302 (5)
H47 0.2199 1.1439 1.0366 0.036*
C48 0.1736 (2) 0.99370 (16) 0.98195 (13) 0.0279 (5)
H48 0.0873 0.9794 0.9406 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0300 (3) 0.0328 (3) 0.0256 (3) 0.0151 (2) 0.0060 (2) 0.0043 (2)
Cl2 0.0398 (3) 0.0298 (3) 0.0227 (3) 0.0145 (3) 0.0059 (2) 0.0056 (2)
O1 0.0273 (8) 0.0225 (8) 0.0304 (8) 0.0101 (7) 0.0088 (6) 0.0127 (6)
O2 0.0203 (7) 0.0238 (8) 0.0245 (7) 0.0041 (6) 0.0025 (5) 0.0060 (6)
N1 0.0191 (9) 0.0228 (10) 0.0223 (8) 0.0083 (8) 0.0006 (6) 0.0050 (7)
N2 0.0218 (9) 0.0254 (10) 0.0269 (9) 0.0048 (8) 0.0048 (7) 0.0062 (7)
N3 0.0176 (9) 0.0247 (10) 0.0246 (9) 0.0065 (8) 0.0023 (7) 0.0020 (7)
N4 0.0220 (9) 0.0218 (10) 0.0260 (9) 0.0075 (8) 0.0031 (7) 0.0020 (7)
N5 0.0236 (9) 0.0216 (10) 0.0213 (8) 0.0098 (8) 0.0010 (7) 0.0060 (7)
N6 0.0314 (10) 0.0224 (10) 0.0240 (9) 0.0136 (8) 0.0074 (7) 0.0100 (7)
N7 0.0289 (10) 0.0198 (9) 0.0201 (8) 0.0131 (8) 0.0030 (7) 0.0071 (7)
N8 0.0252 (9) 0.0193 (9) 0.0227 (8) 0.0101 (8) 0.0032 (7) 0.0083 (7)
C1 0.0212 (10) 0.0249 (11) 0.0203 (10) 0.0126 (9) −0.0013 (7) 0.0073 (8)
C2 0.0211 (11) 0.0236 (11) 0.0233 (10) 0.0090 (9) −0.0012 (8) 0.0083 (8)
C3 0.0265 (11) 0.0286 (12) 0.0199 (10) 0.0161 (10) 0.0038 (8) 0.0076 (8)
C4 0.0350 (13) 0.0218 (12) 0.0249 (11) 0.0137 (10) −0.0007 (9) 0.0042 (8)
C5 0.0301 (12) 0.0199 (11) 0.0304 (11) 0.0074 (9) 0.0017 (9) 0.0090 (9)
C6 0.0237 (11) 0.0255 (12) 0.0234 (10) 0.0125 (9) 0.0030 (8) 0.0107 (8)
C7 0.0230 (11) 0.0232 (11) 0.0226 (10) 0.0087 (9) 0.0055 (8) 0.0086 (8)
C8 0.0207 (11) 0.0389 (14) 0.0228 (10) 0.0115 (10) 0.0030 (8) 0.0088 (9)
C9 0.0236 (11) 0.0329 (13) 0.0245 (10) 0.0143 (10) 0.0051 (8) 0.0101 (9)
C10 0.0239 (11) 0.0225 (11) 0.0213 (10) 0.0087 (9) 0.0077 (8) 0.0068 (8)
C11 0.0182 (10) 0.0226 (11) 0.0196 (9) 0.0062 (9) 0.0036 (7) 0.0061 (8)
C12 0.0187 (10) 0.0229 (11) 0.0216 (10) 0.0078 (9) 0.0025 (7) 0.0097 (8)
C13 0.0233 (11) 0.0273 (12) 0.0226 (10) 0.0048 (9) 0.0039 (8) 0.0067 (9)
C14 0.0189 (11) 0.0278 (13) 0.0330 (11) 0.0094 (9) −0.0001 (8) 0.0000 (9)
C15 0.0211 (11) 0.0295 (13) 0.0248 (10) 0.0084 (9) 0.0046 (8) 0.0048 (9)
C16 0.0174 (10) 0.0268 (12) 0.0308 (11) 0.0070 (9) 0.0025 (8) 0.0017 (9)
C17 0.0268 (12) 0.0231 (12) 0.0284 (11) 0.0069 (10) 0.0066 (9) 0.0026 (9)
C18 0.0446 (15) 0.0251 (13) 0.0303 (12) 0.0113 (11) 0.0112 (10) 0.0061 (9)
C19 0.0288 (12) 0.0280 (12) 0.0220 (10) 0.0088 (10) 0.0110 (8) 0.0061 (9)
C20 0.0304 (13) 0.0361 (14) 0.0253 (11) 0.0086 (11) 0.0085 (9) 0.0079 (9)
C21 0.0511 (16) 0.0411 (16) 0.0432 (14) 0.0258 (13) 0.0256 (12) 0.0227 (12)
C22 0.0585 (18) 0.0264 (14) 0.0490 (15) 0.0109 (13) 0.0326 (13) 0.0077 (11)
C23 0.0328 (14) 0.0386 (16) 0.0348 (13) −0.0027 (12) 0.0079 (10) −0.0077 (11)
C24 0.0261 (12) 0.0428 (15) 0.0320 (12) 0.0101 (11) 0.0045 (9) 0.0044 (10)
C25 0.0196 (10) 0.0216 (11) 0.0201 (10) 0.0096 (9) −0.0023 (7) 0.0053 (8)
C26 0.0236 (11) 0.0228 (11) 0.0232 (10) 0.0093 (9) −0.0008 (8) 0.0088 (8)
C27 0.0254 (11) 0.0282 (12) 0.0165 (9) 0.0128 (9) −0.0002 (8) 0.0057 (8)
C28 0.0262 (11) 0.0209 (11) 0.0237 (10) 0.0108 (9) −0.0023 (8) 0.0021 (8)
C29 0.0189 (10) 0.0201 (11) 0.0268 (11) 0.0039 (9) −0.0033 (8) 0.0068 (8)
C30 0.0193 (10) 0.0248 (12) 0.0208 (10) 0.0080 (9) −0.0007 (7) 0.0057 (8)
C31 0.0227 (11) 0.0250 (12) 0.0197 (10) 0.0094 (9) 0.0061 (8) 0.0070 (8)
C32 0.0337 (12) 0.0309 (13) 0.0257 (11) 0.0193 (10) 0.0081 (9) 0.0132 (9)
C33 0.0222 (11) 0.0309 (12) 0.0226 (10) 0.0119 (9) 0.0037 (8) 0.0110 (9)
C34 0.0223 (11) 0.0237 (11) 0.0203 (10) 0.0086 (9) 0.0056 (8) 0.0073 (8)
C35 0.0211 (10) 0.0215 (11) 0.0209 (10) 0.0097 (9) 0.0057 (7) 0.0080 (8)
C36 0.0171 (10) 0.0214 (11) 0.0240 (10) 0.0067 (9) 0.0029 (7) 0.0079 (8)
C37 0.0273 (11) 0.0219 (11) 0.0251 (10) 0.0120 (9) 0.0087 (8) 0.0097 (8)
C38 0.0321 (12) 0.0222 (11) 0.0207 (10) 0.0137 (10) 0.0005 (8) 0.0072 (8)
C39 0.0276 (11) 0.0241 (12) 0.0210 (10) 0.0120 (9) 0.0048 (8) 0.0073 (8)
C40 0.0272 (11) 0.0234 (11) 0.0211 (10) 0.0117 (9) 0.0047 (8) 0.0093 (8)
C41 0.0273 (12) 0.0214 (11) 0.0257 (10) 0.0091 (9) 0.0040 (8) 0.0075 (8)
C42 0.0294 (12) 0.0228 (12) 0.0272 (11) 0.0085 (10) 0.0074 (8) 0.0062 (9)
C43 0.0273 (12) 0.0263 (12) 0.0206 (10) 0.0111 (10) 0.0078 (8) 0.0074 (8)
C44 0.0285 (12) 0.0297 (13) 0.0278 (11) 0.0144 (10) 0.0100 (8) 0.0146 (9)
C45 0.0247 (12) 0.0361 (14) 0.0237 (10) 0.0091 (10) 0.0051 (8) 0.0112 (9)
C46 0.0299 (13) 0.0275 (13) 0.0290 (11) 0.0078 (10) 0.0084 (9) 0.0026 (9)
C47 0.0346 (13) 0.0259 (12) 0.0301 (11) 0.0152 (10) 0.0064 (9) 0.0059 (9)
C48 0.0292 (12) 0.0265 (12) 0.0273 (11) 0.0122 (10) 0.0030 (8) 0.0077 (9)

Geometric parameters (Å, °)

Cl1—C3 1.745 (2) C18—H18A 0.9900
Cl2—C27 1.7442 (19) C18—H18B 0.9900
O1—C7 1.381 (2) C19—C20 1.388 (3)
O1—C6 1.408 (2) C19—C24 1.389 (3)
O2—C31 1.393 (2) C20—C21 1.381 (3)
O2—C30 1.410 (2) C20—H20 0.9500
N1—C12 1.297 (3) C21—C22 1.373 (4)
N1—C1 1.401 (2) C21—H21 0.9500
N2—C7 1.326 (3) C22—C23 1.386 (4)
N2—C8 1.338 (3) C22—H22 0.9500
N3—C12 1.363 (2) C23—C24 1.392 (3)
N3—C14 1.466 (3) C23—H23 0.9500
N3—C13 1.469 (2) C24—H24 0.9500
N4—C16 1.463 (2) C25—C26 1.398 (3)
N4—C17 1.467 (3) C25—C30 1.405 (3)
N4—C15 1.470 (3) C26—C27 1.385 (3)
N5—C36 1.301 (2) C26—H26 0.9500
N5—C25 1.406 (2) C27—C28 1.385 (3)
N6—C31 1.320 (3) C28—C29 1.389 (3)
N6—C32 1.348 (3) C28—H28 0.9500
N7—C36 1.369 (3) C29—C30 1.379 (3)
N7—C38 1.462 (3) C29—H29 0.9500
N7—C37 1.472 (2) C31—C35 1.390 (3)
N8—C41 1.464 (2) C32—C33 1.380 (3)
N8—C39 1.466 (3) C32—H32 0.9500
N8—C40 1.467 (2) C33—C34 1.387 (3)
C1—C6 1.402 (3) C33—H33 0.9500
C1—C2 1.405 (3) C34—C35 1.391 (3)
C2—C3 1.387 (3) C34—H34 0.9500
C2—H2 0.9500 C35—C36 1.486 (3)
C3—C4 1.380 (3) C37—C39 1.508 (3)
C4—C5 1.391 (3) C37—H37A 0.9900
C4—H4 0.9500 C37—H37B 0.9900
C5—C6 1.384 (3) C38—C40 1.517 (3)
C5—H5 0.9500 C38—H38A 0.9900
C7—C11 1.395 (3) C38—H38B 0.9900
C8—C9 1.384 (3) C39—H39A 0.9900
C8—H8 0.9500 C39—H39B 0.9900
C9—C10 1.393 (3) C40—H40A 0.9900
C9—H9 0.9500 C40—H40B 0.9900
C10—C11 1.384 (3) C41—C42 1.524 (3)
C10—H10 0.9500 C41—H41A 0.9900
C11—C12 1.495 (3) C41—H41B 0.9900
C13—C15 1.506 (3) C42—C43 1.510 (3)
C13—H13A 0.9900 C42—H42A 0.9900
C13—H13B 0.9900 C42—H42B 0.9900
C14—C16 1.520 (3) C43—C48 1.388 (3)
C14—H14A 0.9900 C43—C44 1.394 (3)
C14—H14B 0.9900 C44—C45 1.392 (3)
C15—H15A 0.9900 C44—H44 0.9500
C15—H15B 0.9900 C45—C46 1.379 (3)
C16—H16A 0.9900 C45—H45 0.9500
C16—H16B 0.9900 C46—C47 1.386 (3)
C17—C18 1.521 (3) C46—H46 0.9500
C17—H17A 0.9900 C47—C48 1.385 (3)
C17—H17B 0.9900 C47—H47 0.9500
C18—C19 1.501 (3) C48—H48 0.9500
C7—O1—C6 108.51 (15) C21—C22—C23 119.7 (2)
C31—O2—C30 107.85 (14) C21—C22—H22 120.1
C12—N1—C1 122.45 (17) C23—C22—H22 120.1
C7—N2—C8 116.26 (19) C22—C23—C24 120.0 (2)
C12—N3—C14 119.65 (17) C22—C23—H23 120.0
C12—N3—C13 122.36 (17) C24—C23—H23 120.0
C14—N3—C13 111.97 (15) C19—C24—C23 120.8 (2)
C16—N4—C17 109.81 (16) C19—C24—H24 119.6
C16—N4—C15 108.62 (15) C23—C24—H24 119.6
C17—N4—C15 111.58 (17) C26—C25—C30 117.01 (18)
C36—N5—C25 121.46 (18) C26—C25—N5 118.53 (18)
C31—N6—C32 116.07 (18) C30—C25—N5 124.21 (17)
C36—N7—C38 120.12 (15) C27—C26—C25 119.9 (2)
C36—N7—C37 120.21 (17) C27—C26—H26 120.0
C38—N7—C37 112.65 (16) C25—C26—H26 120.0
C41—N8—C39 110.58 (15) C26—C27—C28 122.30 (19)
C41—N8—C40 110.43 (16) C26—C27—Cl2 119.27 (17)
C39—N8—C40 107.81 (16) C28—C27—Cl2 118.42 (15)
N1—C1—C6 124.50 (18) C27—C28—C29 118.42 (18)
N1—C1—C2 117.77 (18) C27—C28—H28 120.8
C6—C1—C2 117.31 (18) C29—C28—H28 120.8
C3—C2—C1 119.8 (2) C30—C29—C28 119.5 (2)
C3—C2—H2 120.1 C30—C29—H29 120.3
C1—C2—H2 120.1 C28—C29—H29 120.3
C4—C3—C2 122.16 (19) C29—C30—C25 122.73 (18)
C4—C3—Cl1 118.81 (15) C29—C30—O2 118.25 (18)
C2—C3—Cl1 119.03 (17) C25—C30—O2 119.02 (17)
C3—C4—C5 118.86 (19) N6—C31—C35 125.67 (19)
C3—C4—H4 120.6 N6—C31—O2 116.04 (18)
C5—C4—H4 120.6 C35—C31—O2 118.28 (18)
C6—C5—C4 119.4 (2) N6—C32—C33 123.6 (2)
C6—C5—H5 120.3 N6—C32—H32 118.2
C4—C5—H5 120.3 C33—C32—H32 118.2
C5—C6—C1 122.44 (19) C32—C33—C34 118.69 (19)
C5—C6—O1 118.19 (19) C32—C33—H33 120.7
C1—C6—O1 119.34 (17) C34—C33—H33 120.7
N2—C7—O1 116.16 (19) C33—C34—C35 119.05 (19)
N2—C7—C11 125.0 (2) C33—C34—H34 120.5
O1—C7—C11 118.86 (18) C35—C34—H34 120.5
N2—C8—C9 124.1 (2) C31—C35—C34 116.89 (19)
N2—C8—H8 117.9 C31—C35—C36 120.65 (17)
C9—C8—H8 117.9 C34—C35—C36 122.14 (19)
C8—C9—C10 118.2 (2) N5—C36—N7 119.44 (19)
C8—C9—H9 120.9 N5—C36—C35 124.18 (18)
C10—C9—H9 120.9 N7—C36—C35 115.85 (16)
C11—C10—C9 119.0 (2) N7—C37—C39 110.22 (16)
C11—C10—H10 120.5 N7—C37—H37A 109.6
C9—C10—H10 120.5 C39—C37—H37A 109.6
C10—C11—C7 117.41 (18) N7—C37—H37B 109.6
C10—C11—C12 122.08 (19) C39—C37—H37B 109.6
C7—C11—C12 120.12 (19) H37A—C37—H37B 108.1
N1—C12—N3 119.41 (18) N7—C38—C40 108.73 (15)
N1—C12—C11 123.82 (17) N7—C38—H38A 109.9
N3—C12—C11 116.22 (17) C40—C38—H38A 109.9
N3—C13—C15 109.85 (17) N7—C38—H38B 109.9
N3—C13—H13A 109.7 C40—C38—H38B 109.9
C15—C13—H13A 109.7 H38A—C38—H38B 108.3
N3—C13—H13B 109.7 N8—C39—C37 110.54 (16)
C15—C13—H13B 109.7 N8—C39—H39A 109.5
H13A—C13—H13B 108.2 C37—C39—H39A 109.5
N3—C14—C16 109.06 (17) N8—C39—H39B 109.5
N3—C14—H14A 109.9 C37—C39—H39B 109.5
C16—C14—H14A 109.9 H39A—C39—H39B 108.1
N3—C14—H14B 109.9 N8—C40—C38 111.45 (16)
C16—C14—H14B 109.9 N8—C40—H40A 109.3
H14A—C14—H14B 108.3 C38—C40—H40A 109.3
N4—C15—C13 111.03 (18) N8—C40—H40B 109.3
N4—C15—H15A 109.4 C38—C40—H40B 109.3
C13—C15—H15A 109.4 H40A—C40—H40B 108.0
N4—C15—H15B 109.4 N8—C41—C42 113.44 (17)
C13—C15—H15B 109.4 N8—C41—H41A 108.9
H15A—C15—H15B 108.0 C42—C41—H41A 108.9
N4—C16—C14 112.14 (18) N8—C41—H41B 108.9
N4—C16—H16A 109.2 C42—C41—H41B 108.9
C14—C16—H16A 109.2 H41A—C41—H41B 107.7
N4—C16—H16B 109.2 C43—C42—C41 112.03 (17)
C14—C16—H16B 109.2 C43—C42—H42A 109.2
H16A—C16—H16B 107.9 C41—C42—H42A 109.2
N4—C17—C18 113.11 (18) C43—C42—H42B 109.2
N4—C17—H17A 109.0 C41—C42—H42B 109.2
C18—C17—H17A 109.0 H42A—C42—H42B 107.9
N4—C17—H17B 109.0 C48—C43—C44 118.2 (2)
C18—C17—H17B 109.0 C48—C43—C42 121.78 (19)
H17A—C17—H17B 107.8 C44—C43—C42 120.0 (2)
C19—C18—C17 111.98 (18) C45—C44—C43 120.7 (2)
C19—C18—H18A 109.2 C45—C44—H44 119.7
C17—C18—H18A 109.2 C43—C44—H44 119.7
C19—C18—H18B 109.2 C46—C45—C44 120.2 (2)
C17—C18—H18B 109.2 C46—C45—H45 119.9
H18A—C18—H18B 107.9 C44—C45—H45 119.9
C20—C19—C24 117.9 (2) C45—C46—C47 119.6 (2)
C20—C19—C18 120.6 (2) C45—C46—H46 120.2
C24—C19—C18 121.5 (2) C47—C46—H46 120.2
C21—C20—C19 121.6 (2) C48—C47—C46 120.1 (2)
C21—C20—H20 119.2 C48—C47—H47 119.9
C19—C20—H20 119.2 C46—C47—H47 119.9
C22—C21—C20 120.0 (3) C47—C48—C43 121.1 (2)
C22—C21—H21 120.0 C47—C48—H48 119.4
C20—C21—H21 120.0 C43—C48—H48 119.4

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2144).

References

  1. Andreasen, N. C. (2000). Brain Res. Brain Res. Rev.31, 106–112. [DOI] [PubMed]
  2. Andreasen, N. C., Nopoulos, P., Schultz, S., Miller, D., Gupta, S., Swayze, V. & Flaum, M. (1994). Acta Psychiatr. Scand. Suppl.384, 51–59. [DOI] [PubMed]
  3. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  4. Bruker (2000). COLLECT. Bruker AXS BV, Delft, The Netherlands.
  5. Capuano, B. (1999). Molecules, 4, 329-332.
  6. Capuano, B., Crosby, I. T., Forsyth, C. M., Lloyd, E. J., Vom, A. & Yuriev, E. (2006). Acta Cryst. E62, o5434–o5436. [DOI] [PMC free article] [PubMed]
  7. Capuano, B., Crosby, I. T., Lloyd, E. J. & Taylor, D. A. (2002). Aust. J. Chem.55, 565–576.
  8. Capuano, B., Crosby, I. T., Lloyd, E. J. & Taylor, D. A. (2003). Aust. J. Chem.56, 875–886.
  9. Dupont, L. & Liégeois, J.-F. (2003). Acta Cryst. E59, o1962–o1963.
  10. Gerlach, J. (1991). Schizophr. Bull.17, 289–309. [DOI] [PubMed]
  11. Gerson, S. L. & Meltzer, H. (1992). Drug Safety, 7 (Suppl. 1), 17–25. [DOI] [PubMed]
  12. Liégeois, J.-F., Mouithys-Mickalad, A., Bruhwyler, J., Petit, C., Kauffmann, J. M. & Lamy, M. (1997). Biochem. Biophys. Res. Commun.238, 252–255. [DOI] [PubMed]
  13. Liégeois, J.-F., Rogistert, F. A., Bruhwyler, J., Damas, J., Nguyen, T. P., Inarejos, M.-O., Chleide, E. M. G., Mercier, M. G. A. & Delarget, J. E. (1994). J. Med. Chem.37, 519–525. [DOI] [PubMed]
  14. Liégeois, J.-F., Zahid, N., Bruhwyler, J. & Uetrecht, J. (2000). Arch. Pharm. Wienheim, Ger.333, 63–67. [DOI] [PubMed]
  15. Mouithys-Mickalad, A., Kauffmann, J. M., Petit, C., Bruhwyler, J., Liao, Y., Wikstrom, H., Damas, J., Delarge, J., Deby-Dupont, G., Geczy, J. & Liegeois, J.-F. (2001). J. Med. Chem.44, 769–776. [DOI] [PubMed]
  16. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  17. Petcher, T. J. & Weber, H.-P. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1415–1420.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Vom, A. (2006). Honours Thesis, Monash University (Parkville), Victoria, Australia.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808027062/fj2144sup1.cif

e-64-o1865-sup1.cif (29.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027062/fj2144Isup2.hkl

e-64-o1865-Isup2.hkl (466.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES