Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 20;64(Pt 10):m1304. doi: 10.1107/S1600536808029814

{2,6-Bis[(di-tert-butyl­phosphino)­methyl]­phenyl}chloridonickel(II)

Brian J Boro a, Diane A Dickie a, Karen I Goldberg b, Richard A Kemp a,*,
PMCID: PMC2959246  PMID: 21201043

Abstract

In the title compound, [Ni(C24H43P2)Cl], the Ni atom adopts a distorted square-planar geometry, with the P atoms of the 2,6-bis­[(di-tert-butyl­phosphino)meth­yl]phenyl ligand trans to one another. The P—Ni—P plane is twisted out of the plane of the aromatic ring by 21.97 (6)°.

Related literature

For the original synthesis and spectroscopic characterization of the title compound, see: Moulton & Shaw (1976). For the crystallographic characterization of the Pd analogue, see: Kimmich et al. (2002). For crystallographic characterization of the 2,6-bis­[(di-tert-butyl­phosphino)meth­yl]benzene ligand, see: Hollink et al. (2003). For related literature, see: Denney et al. (2006); Keith et al. (2006).graphic file with name e-64-m1304-scheme1.jpg

Experimental

Crystal data

  • [Ni(C24H43P2)Cl]

  • M r = 487.68

  • Orthorhombic, Inline graphic

  • a = 11.3394 (4) Å

  • b = 15.0463 (5) Å

  • c = 15.4184 (5) Å

  • V = 2630.63 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 225 (2) K

  • 0.50 × 0.50 × 0.40 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.622, T max = 0.679

  • 84881 measured reflections

  • 10074 independent reflections

  • 8461 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.084

  • S = 1.09

  • 10074 reflections

  • 265 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.50 e Å−3

  • Absolute structure: Flack (1983), with 4507 Friedel pairs

  • Flack parameter: 0.006 (7)

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808029814/pv2105sup1.cif

e-64-m1304-sup1.cif (23.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029814/pv2105Isup2.hkl

e-64-m1304-Isup2.hkl (492.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Eileen Duesler and Ana Felix (UNM) for the X-ray data collection. Funding was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC PDF to DAD), and the Department of Energy (DE-FG02-06ER15765). The Bruker X-ray diffractometer was purchased via a National Science Foundation CRIF:MU award to the University of New Mexico (CHE-0443580). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under contract No. DE-AC04-94AL85000.

supplementary crystallographic information

Comment

The title compound, (I), was originally prepared by Moulton & Shaw (1976) but its crystal structure was not determined at that time. We have prepared (I) as part of our studies of PCP 'pincer' complexes of divalent late transition metals, which show promise as catalysts for the epoxidation of olefins (Denney et al., 2006; Keith et al., 2006).

In the molecular stucture of (I) (Fig. 1), the nickel adopts a square planar geometry, with the phosphorus atoms trans to one another. The Ni—P bond lengths 2.1921 (4) and 2.1978 (4) Å, are significantly shorter than the corresponding Pd—P bonds [2.3039 (6) and 2.3969 (6) Å] in the analogous palladium complex (Kimmich et al., 2002). Steric hindrance distorts the P—Ni—P bond angle to 169.651 (18)°, while the less constrained C—Ni—Cl angle is much closer to linearity at 176.13 (5)°.

Significant geometrical changes are observed in the 2,6-bis[(di-tert-butylphosphino)methyl]benzene ligand upon binding to nickel. In the free ligand (Hollink et al., 2003), the average P—Cmethylene bond length is 1.870 Å, while in (I), it has decreased to 1.8308 (19) Å (P1—C8) and 1.8341 (18) Å (P2—C7). This bond shortening is accompanied by change in the P—Cmethylene—Cphenyl angle, from 114.5° in the free ligand to 106.23 (12)° (P1—C8—C2) and 106.84 (12)° (P2—C7—C6) in (I).

Experimental

A solution of nickel chloride hexahydrate (0.6 g, 2.5 mmol) dissolved in 2 ml of degassed water was added to a solution of 2,6-bis-[(di-tert-butylphosphino)methyl]benzene (1.02 g, 2.6 mmol) in 10 ml ethanol. The solution was heated to reflux. A golden-yellow precipitate began to form only after 0.5 h. The solution was stirred under gentle reflux overnight. After cooling, the product was collected by filtration and washed with cold ethanol. It was recrystallized from a concentrated solution of pentane at 238 K.

Refinement

Hydrogen atoms were included at geometrically idealized positions with C—H distances 0.94, 0.97 and 0.98 Å, for aryl, methyl and methylene H-atoms in a riding mode on the respective heavy atoms. The isotropic displacement parameters for the hydrogen atoms were fixed at 1.5 and 1.2 times Ueq of the parent methyl and non-methyl C-atoms. An absolute structure was determined (Flack, 1983) employing 4507 Friedel pairs of reflections which were not merged.

Figures

Fig. 1.

Fig. 1.

View of the title compound showing numbering scheme. Ellipsoids are shown at 50% probability and hydrogen atoms have been removed for clarity.

Crystal data

[Ni(C24H43P2)Cl] F(000) = 1048
Mr = 487.68 Dx = 1.231 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 8656 reflections
a = 11.3394 (4) Å θ = 2.2–32.5°
b = 15.0463 (5) Å µ = 0.97 mm1
c = 15.4184 (5) Å T = 225 K
V = 2630.63 (15) Å3 Prism, gold-brown
Z = 4 0.50 × 0.50 × 0.40 mm

Data collection

Bruker SMART CCD area-detector diffractometer 10074 independent reflections
Radiation source: fine-focus sealed tube 8461 reflections with I > 2σ(I)
graphite Rint = 0.048
φ and ω scans θmax = 33.2°, θmin = 1.9°
Absorption correction: empirical (using intensity measurements) (SADABS; Bruker, 2004) h = −17→17
Tmin = 0.622, Tmax = 0.679 k = −23→23
84881 measured reflections l = −23→23

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033 H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0439P)2] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.002
10074 reflections Δρmax = 0.32 e Å3
265 parameters Δρmin = −0.50 e Å3
0 restraints Absolute structure: Flack (1983), with 4507 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.006 (7)

Special details

Experimental. Yield = 60%. 1H NMR (250 MHz, C6D6) δ 7.00 (t, 1H, 3JHH = 7.4 Hz, Ar-Hpara), 6.84 (d, 2H, 3JHH = 7.4 Hz, Ar-Hmeta), 2.91 (virtual t, 4H, JHP = 6.8 Hz, CH2), 1.40 (virtual t, 36H, JHP = 12.7 Hz, CH3) p.p.m. 13C{1H} NMR (63 MHz, C6D6) δ 155.7 (t, 2JCP = 16.7 Hz, Ar-Cipso), 153.0 (virtual t, JCP = 25.5 Hz, Ar-Cortho), 125.2 (s, Ar-Cpara), 121.8 (virtual t, JCP = 16.7 Hz, Ar-Cmeta), 34.9 (virtual t, JCP = 13.4 Hz, PCH2), 34.3 (virtual t, JCP = 22.7 Hz, PC(CH3)3), 29.8 (s, CH3) p.p.m. 31P{1H} NMR (101 MHz, C6D6) δ 66.9 p.p.m.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.536566 (17) 0.968358 (13) 0.925683 (12) 0.02623 (5)
Cl1 0.60025 (5) 1.02689 (4) 0.80121 (3) 0.04914 (12)
P1 0.38227 (4) 0.90497 (3) 0.86644 (3) 0.02696 (8)
P2 0.67658 (4) 1.02487 (3) 1.00738 (3) 0.02786 (8)
C1 0.48595 (14) 0.91031 (10) 1.03045 (10) 0.0278 (3)
C2 0.37594 (16) 0.86671 (11) 1.03569 (11) 0.0326 (3)
C3 0.34528 (18) 0.81652 (13) 1.10805 (13) 0.0405 (4)
H3 0.2723 0.7869 1.1094 0.049*
C4 0.4201 (2) 0.80982 (13) 1.17718 (13) 0.0441 (5)
H4 0.3992 0.7750 1.2254 0.053*
C5 0.52717 (18) 0.85476 (12) 1.17589 (11) 0.0383 (4)
H5 0.5780 0.8516 1.2240 0.046*
C6 0.55930 (16) 0.90460 (11) 1.10322 (11) 0.0327 (3)
C7 0.67683 (17) 0.95101 (13) 1.10201 (12) 0.0391 (4)
H7A 0.7409 0.9076 1.0974 0.047*
H7B 0.6879 0.9854 1.1554 0.047*
C8 0.29202 (16) 0.87651 (14) 0.96090 (12) 0.0382 (4)
H8A 0.2345 0.9236 0.9727 0.046*
H8B 0.2494 0.8208 0.9508 0.046*
C9 0.41665 (16) 0.79598 (10) 0.81364 (12) 0.0339 (3)
C10 0.5097 (2) 0.80785 (14) 0.74313 (14) 0.0488 (5)
H10A 0.5784 0.8371 0.7674 0.073*
H10B 0.4776 0.8439 0.6966 0.073*
H10C 0.5322 0.7501 0.7205 0.073*
C11 0.3068 (2) 0.75117 (14) 0.77561 (15) 0.0497 (5)
H11A 0.2776 0.7861 0.7273 0.075*
H11B 0.2463 0.7471 0.8199 0.075*
H11C 0.3271 0.6920 0.7556 0.075*
C12 0.4694 (2) 0.73571 (12) 0.88360 (14) 0.0471 (5)
H12A 0.4934 0.6798 0.8577 0.071*
H12B 0.4108 0.7245 0.9281 0.071*
H12C 0.5374 0.7646 0.9093 0.071*
C13 0.28236 (17) 0.97553 (14) 0.79810 (13) 0.0422 (4)
C14 0.15386 (19) 0.94355 (18) 0.79892 (18) 0.0618 (6)
H14A 0.1057 0.9840 0.7651 0.093*
H14B 0.1252 0.9420 0.8582 0.093*
H14C 0.1494 0.8844 0.7740 0.093*
C15 0.3241 (2) 0.98364 (15) 0.70379 (13) 0.0539 (5)
H15A 0.3162 0.9266 0.6751 0.081*
H15B 0.4061 1.0020 0.7028 0.081*
H15C 0.2764 1.0275 0.6738 0.081*
C16 0.2868 (3) 1.06881 (15) 0.83988 (18) 0.0642 (7)
H16A 0.2328 1.1081 0.8098 0.096*
H16B 0.3663 1.0923 0.8357 0.096*
H16C 0.2643 1.0646 0.9004 0.096*
C17 0.83287 (16) 1.01907 (13) 0.96814 (12) 0.0369 (4)
C18 0.84152 (19) 0.92899 (15) 0.92080 (17) 0.0524 (5)
H18A 0.9217 0.9200 0.9007 0.079*
H18B 0.7882 0.9288 0.8716 0.079*
H18C 0.8201 0.8815 0.9604 0.079*
C19 0.92396 (18) 1.02033 (17) 1.04173 (15) 0.0514 (5)
H19A 1.0020 1.0103 1.0180 0.077*
H19B 0.9055 0.9739 1.0832 0.077*
H19C 0.9219 1.0776 1.0705 0.077*
C20 0.63680 (18) 1.13804 (12) 1.04915 (13) 0.0403 (4)
C21 0.5238 (2) 1.12685 (15) 1.10274 (17) 0.0593 (6)
H21A 0.5401 1.0901 1.1530 0.089*
H21B 0.4636 1.0987 1.0674 0.089*
H21C 0.4962 1.1847 1.1217 0.089*
C22 0.7314 (2) 1.17943 (16) 1.10738 (16) 0.0585 (6)
H22A 0.8020 1.1907 1.0735 0.088*
H22B 0.7500 1.1389 1.1543 0.088*
H22C 0.7023 1.2349 1.1312 0.088*
C23 0.6101 (3) 1.19968 (14) 0.97333 (16) 0.0571 (6)
H23A 0.5786 1.2553 0.9951 0.086*
H23B 0.5527 1.1719 0.9354 0.086*
H23C 0.6821 1.2111 0.9412 0.086*
C24 0.86278 (18) 1.09373 (16) 0.90427 (14) 0.0491 (5)
H24A 0.8597 1.1505 0.9340 0.074*
H24B 0.8062 1.0936 0.8571 0.074*
H24C 0.9414 1.0844 0.8812 0.074*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.02964 (9) 0.02516 (9) 0.02389 (9) −0.00470 (8) −0.00320 (8) 0.00305 (7)
Cl1 0.0605 (3) 0.0569 (3) 0.02997 (19) −0.0283 (3) −0.00855 (19) 0.0151 (2)
P1 0.02591 (18) 0.02588 (17) 0.02911 (19) −0.00090 (15) −0.00127 (15) −0.00323 (15)
P2 0.03048 (18) 0.02878 (18) 0.02431 (17) −0.00396 (16) −0.00252 (14) 0.00080 (16)
C1 0.0318 (8) 0.0261 (6) 0.0256 (7) −0.0007 (6) 0.0043 (6) 0.0008 (6)
C2 0.0343 (8) 0.0312 (8) 0.0321 (8) −0.0005 (7) 0.0090 (7) −0.0036 (6)
C3 0.0416 (10) 0.0390 (9) 0.0411 (9) −0.0050 (8) 0.0187 (8) −0.0025 (8)
C4 0.0579 (12) 0.0399 (9) 0.0345 (9) 0.0028 (9) 0.0192 (9) 0.0076 (7)
C5 0.0465 (10) 0.0410 (9) 0.0273 (8) 0.0087 (8) 0.0051 (8) 0.0062 (7)
C6 0.0394 (9) 0.0319 (8) 0.0268 (7) 0.0021 (7) 0.0030 (6) 0.0027 (6)
C7 0.0393 (9) 0.0472 (10) 0.0309 (8) −0.0033 (8) −0.0079 (7) 0.0094 (7)
C8 0.0301 (8) 0.0469 (10) 0.0377 (9) −0.0050 (7) 0.0061 (7) −0.0095 (8)
C9 0.0396 (9) 0.0247 (7) 0.0375 (9) −0.0030 (6) 0.0075 (7) −0.0057 (6)
C10 0.0569 (13) 0.0432 (10) 0.0465 (11) 0.0010 (9) 0.0210 (9) −0.0067 (8)
C11 0.0562 (12) 0.0374 (10) 0.0556 (12) −0.0123 (9) 0.0036 (10) −0.0146 (9)
C12 0.0604 (12) 0.0281 (8) 0.0529 (11) 0.0085 (9) 0.0101 (11) 0.0009 (7)
C13 0.0421 (9) 0.0404 (9) 0.0442 (10) 0.0116 (8) −0.0140 (8) −0.0054 (9)
C14 0.0352 (10) 0.0807 (17) 0.0696 (15) 0.0119 (10) −0.0166 (10) −0.0113 (13)
C15 0.0648 (14) 0.0528 (12) 0.0441 (11) 0.0079 (11) −0.0195 (10) 0.0053 (9)
C16 0.0812 (18) 0.0433 (11) 0.0682 (16) 0.0299 (12) −0.0268 (14) −0.0098 (11)
C17 0.0303 (8) 0.0426 (9) 0.0378 (9) −0.0044 (7) −0.0011 (7) 0.0008 (8)
C18 0.0414 (10) 0.0530 (12) 0.0627 (13) 0.0072 (9) 0.0048 (10) −0.0128 (11)
C19 0.0348 (9) 0.0644 (13) 0.0551 (12) −0.0068 (9) −0.0094 (9) 0.0041 (11)
C20 0.0479 (11) 0.0351 (9) 0.0378 (9) −0.0036 (8) 0.0014 (8) −0.0089 (7)
C21 0.0600 (14) 0.0528 (12) 0.0650 (14) 0.0047 (11) 0.0205 (12) −0.0166 (11)
C22 0.0662 (15) 0.0557 (13) 0.0535 (13) −0.0148 (11) −0.0036 (12) −0.0227 (11)
C23 0.0776 (17) 0.0351 (10) 0.0586 (14) 0.0104 (11) −0.0019 (13) 0.0007 (9)
C24 0.0399 (10) 0.0612 (12) 0.0462 (11) −0.0106 (9) 0.0041 (8) 0.0102 (10)

Geometric parameters (Å, °)

Ni1—C1 1.9239 (15) C13—C15 1.534 (3)
Ni1—P1 2.1921 (4) C13—C14 1.535 (3)
Ni1—P2 2.1978 (4) C13—C16 1.545 (3)
Ni1—Cl1 2.2317 (5) C14—H14A 0.9700
P1—C8 1.8308 (19) C14—H14B 0.9700
P1—C9 1.8720 (16) C14—H14C 0.9700
P1—C13 1.8763 (18) C15—H15A 0.9700
P2—C7 1.8341 (18) C15—H15B 0.9700
P2—C17 1.8746 (19) C15—H15C 0.9700
P2—C20 1.8756 (19) C16—H16A 0.9700
C1—C6 1.399 (2) C16—H16B 0.9700
C1—C2 1.412 (2) C16—H16C 0.9700
C2—C3 1.391 (2) C17—C24 1.532 (3)
C2—C8 1.502 (3) C17—C19 1.534 (3)
C3—C4 1.366 (3) C17—C18 1.543 (3)
C3—H3 0.9400 C18—H18A 0.9700
C4—C5 1.390 (3) C18—H18B 0.9700
C4—H4 0.9400 C18—H18C 0.9700
C5—C6 1.397 (2) C19—H19A 0.9700
C5—H5 0.9400 C19—H19B 0.9700
C6—C7 1.505 (3) C19—H19C 0.9700
C7—H7A 0.9800 C20—C23 1.523 (3)
C7—H7B 0.9800 C20—C22 1.532 (3)
C8—H8A 0.9800 C20—C21 1.534 (3)
C8—H8B 0.9800 C21—H21A 0.9700
C9—C10 1.525 (3) C21—H21B 0.9700
C9—C12 1.531 (3) C21—H21C 0.9700
C9—C11 1.533 (3) C22—H22A 0.9700
C10—H10A 0.9700 C22—H22B 0.9700
C10—H10B 0.9700 C22—H22C 0.9700
C10—H10C 0.9700 C23—H23A 0.9700
C11—H11A 0.9700 C23—H23B 0.9700
C11—H11B 0.9700 C23—H23C 0.9700
C11—H11C 0.9700 C24—H24A 0.9700
C12—H12A 0.9700 C24—H24B 0.9700
C12—H12B 0.9700 C24—H24C 0.9700
C12—H12C 0.9700
C1—Ni1—P1 85.08 (5) C15—C13—C14 109.01 (18)
C1—Ni1—P2 84.83 (5) C15—C13—C16 108.2 (2)
P1—Ni1—P2 169.651 (18) C14—C13—C16 108.22 (19)
C1—Ni1—Cl1 176.13 (5) C15—C13—P1 113.01 (14)
P1—Ni1—Cl1 94.109 (18) C14—C13—P1 113.03 (17)
P2—Ni1—Cl1 96.109 (17) C16—C13—P1 105.07 (13)
C8—P1—C9 104.92 (9) C13—C14—H14A 109.5
C8—P1—C13 103.98 (9) C13—C14—H14B 109.5
C9—P1—C13 112.16 (9) H14A—C14—H14B 109.5
C8—P1—Ni1 102.50 (6) C13—C14—H14C 109.5
C9—P1—Ni1 113.34 (6) H14A—C14—H14C 109.5
C13—P1—Ni1 118.02 (7) H14B—C14—H14C 109.5
C7—P2—C17 103.12 (9) C13—C15—H15A 109.5
C7—P2—C20 106.10 (9) C13—C15—H15B 109.5
C17—P2—C20 112.36 (9) H15A—C15—H15B 109.5
C7—P2—Ni1 102.87 (6) C13—C15—H15C 109.5
C17—P2—Ni1 118.68 (6) H15A—C15—H15C 109.5
C20—P2—Ni1 111.98 (7) H15B—C15—H15C 109.5
C6—C1—C2 116.79 (15) C13—C16—H16A 109.5
C6—C1—Ni1 121.59 (12) C13—C16—H16B 109.5
C2—C1—Ni1 121.51 (12) H16A—C16—H16B 109.5
C3—C2—C1 121.26 (17) C13—C16—H16C 109.5
C3—C2—C8 120.69 (17) H16A—C16—H16C 109.5
C1—C2—C8 118.05 (15) H16B—C16—H16C 109.5
C4—C3—C2 120.70 (18) C24—C17—C19 108.50 (16)
C4—C3—H3 119.6 C24—C17—C18 109.02 (17)
C2—C3—H3 119.6 C19—C17—C18 108.54 (18)
C3—C4—C5 119.69 (17) C24—C17—P2 112.50 (14)
C3—C4—H4 120.2 C19—C17—P2 113.40 (13)
C5—C4—H4 120.2 C18—C17—P2 104.70 (13)
C4—C5—C6 120.04 (18) C17—C18—H18A 109.5
C4—C5—H5 120.0 C17—C18—H18B 109.5
C6—C5—H5 120.0 H18A—C18—H18B 109.5
C5—C6—C1 121.42 (16) C17—C18—H18C 109.5
C5—C6—C7 119.36 (17) H18A—C18—H18C 109.5
C1—C6—C7 119.21 (14) H18B—C18—H18C 109.5
C6—C7—P2 106.84 (12) C17—C19—H19A 109.5
C6—C7—H7A 110.4 C17—C19—H19B 109.5
P2—C7—H7A 110.4 H19A—C19—H19B 109.5
C6—C7—H7B 110.4 C17—C19—H19C 109.5
P2—C7—H7B 110.4 H19A—C19—H19C 109.5
H7A—C7—H7B 108.6 H19B—C19—H19C 109.5
C2—C8—P1 106.23 (12) C23—C20—C22 109.96 (19)
C2—C8—H8A 110.5 C23—C20—C21 108.3 (2)
P1—C8—H8A 110.5 C22—C20—C21 108.32 (18)
C2—C8—H8B 110.5 C23—C20—P2 109.70 (13)
P1—C8—H8B 110.5 C22—C20—P2 113.70 (16)
H8A—C8—H8B 108.7 C21—C20—P2 106.63 (13)
C10—C9—C12 107.52 (16) C20—C21—H21A 109.5
C10—C9—C11 109.93 (16) C20—C21—H21B 109.5
C12—C9—C11 109.06 (16) H21A—C21—H21B 109.5
C10—C9—P1 110.57 (12) C20—C21—H21C 109.5
C12—C9—P1 107.09 (12) H21A—C21—H21C 109.5
C11—C9—P1 112.49 (13) H21B—C21—H21C 109.5
C9—C10—H10A 109.5 C20—C22—H22A 109.5
C9—C10—H10B 109.5 C20—C22—H22B 109.5
H10A—C10—H10B 109.5 H22A—C22—H22B 109.5
C9—C10—H10C 109.5 C20—C22—H22C 109.5
H10A—C10—H10C 109.5 H22A—C22—H22C 109.5
H10B—C10—H10C 109.5 H22B—C22—H22C 109.5
C9—C11—H11A 109.5 C20—C23—H23A 109.5
C9—C11—H11B 109.5 C20—C23—H23B 109.5
H11A—C11—H11B 109.5 H23A—C23—H23B 109.5
C9—C11—H11C 109.5 C20—C23—H23C 109.5
H11A—C11—H11C 109.5 H23A—C23—H23C 109.5
H11B—C11—H11C 109.5 H23B—C23—H23C 109.5
C9—C12—H12A 109.5 C17—C24—H24A 109.5
C9—C12—H12B 109.5 C17—C24—H24B 109.5
H12A—C12—H12B 109.5 H24A—C24—H24B 109.5
C9—C12—H12C 109.5 C17—C24—H24C 109.5
H12A—C12—H12C 109.5 H24A—C24—H24C 109.5
H12B—C12—H12C 109.5 H24B—C24—H24C 109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2105).

References

  1. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2003). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2004). SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Denney, M. C., Smythe, N. A., Cetto, K. L., Kemp, R. A. & Goldberg, K. I. (2006). J. Am. Chem. Soc.128, 2508–2509. [DOI] [PubMed]
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Hollink, E., Stewart, J. C., Wei, P. & Stephan, D. W. (2003). J. Chem. Soc. Dalton Trans. pp. 3968–3974.
  7. Keith, J. M., Muller, R. P., Kemp, R. A., Goldberg, K. I., Goddard, W. A. III & Oxgaard, J. (2006). Inorg. Chem.45, 9631–9633. [DOI] [PubMed]
  8. Kimmich, B. F. M., Marshall, W. J., Fagan, P. J., Hauptman, E. & Bullock, R. M. (2002). Inorg. Chim. Acta, 330, 52–58.
  9. Moulton, C. J. & Shaw, B. L. (1976). J. Chem. Soc. Dalton Trans. pp. 1020–1024.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Westrip, S. P. (2008). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808029814/pv2105sup1.cif

e-64-m1304-sup1.cif (23.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029814/pv2105Isup2.hkl

e-64-m1304-Isup2.hkl (492.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES