Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 27;64(Pt 10):o2017. doi: 10.1107/S1600536808029930

(E)-4-(5-Hydr­oxy-2-methyl­benzyl­idene­amino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one

Yun-Fa Zheng a, Ming-Hua Yang a,*
PMCID: PMC2959250  PMID: 21201212

Abstract

The title compound, C19H19N3O2, is a Schiff base compound derived from 4-amino­anti­pyrine and 5-hydr­oxy-2-methyl­benzaldehyde. The mol­ecule adopts a trans configuration about the central C=N bond. There is an intra­molecular O—H⋯N hydrogen bond. Futhermore, weak C—H⋯O hydrogen bonds lead to the formation of a chain developing parallel to the b axis.

Related literature

For related literature, see: Alemi & Shaabani (2000); Kim & Shin (1999); Yan et al. (2006); Zheng et al. (2006); You et al. (2006).graphic file with name e-64-o2017-scheme1.jpg

Experimental

Crystal data

  • C19H19N3O2

  • M r = 321.37

  • Monoclinic, Inline graphic

  • a = 12.030 (2) Å

  • b = 7.1400 (14) Å

  • c = 20.210 (4) Å

  • β = 104.01 (3)°

  • V = 1684.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.28 × 0.27 × 0.23 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.965, T max = 0.971

  • 12992 measured reflections

  • 3038 independent reflections

  • 2101 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.117

  • S = 1.11

  • 3038 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808029930/dn2375sup1.cif

e-64-o2017-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029930/dn2375Isup2.hkl

e-64-o2017-Isup2.hkl (146.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.82 1.90 2.6275 (19) 148
C10—H10C⋯O1i 0.96 2.46 3.386 (2) 163

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the Natural Science Foundation of Zhejiang Province (No. Y407081) for financial support.

supplementary crystallographic information

Comment

The design, synthesis, characterization, and properties of Schiff bases and Schiff base complexes. (Yan et al., 2006; Zheng et al., 2006; You et al., 2006) are still of great interest. Schiff bases that have solvent dependent UV/vis spectra (solvatochromicity) can be suitable NLO active materials (Alemi & Shaabani, 2000). They are also useful in asymmetric oxidation of methyl phenyl sulfide (Kim & Shin, 1999).

The molecule adopts trans configuration about the central C=N bond (Fig. 1). There is an intramolecular O-H···N hydrogen bond. Futhermore, weak C-H···O hydrogen bonds lead to the formation of a chain developping parallel to the b axis (Table 1, Fig. 2).

Experimental

Under nitrogen, a mixture of 5-hydroxy-2-methylbenzaldehyde (1.36 g,10 mmol) and 4-amino-1,2-dihydro-1,5-dimethyl -1-phenylpyrazol-3-one (2.03 g, 10 mmol) in absolute ethanol (120 ml) was refluxed for about 3 h to yield a yellow precipitate. The product was collected by vacuum filtration and washed with ethanol. The crude solid was redissolved in CH2Cl2 (100 ml) and washed with water (2*10 ml)and brine(10 ml). After dried over Na2SO4, the solvent was removed under vacuum, and yellow solid was isolated in yield 92% (3.5 g). Colourless single crystals of the compound suitable for X-ray analysis were grown from CH2Cl2 and absolute ethanol(5:1) by slow evaporation of the solvent at room temperature over a period of about a week.

Refinement

All H atoms attached to C and O atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(aromatic) or Uiso(H) = 1.5Ueq(methyl, O). The H attached to C18 are statistically disordered over two positions.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bond is shown as dashed line.

Fig. 2.

Fig. 2.

Partial packing view showing the formation of the chain through C-H···O hydrogen bondings displayed as dashed line. H atoms not involved in hydrogen bonds have been omitted for clarity. [Symmetry code: (i) x, 1+y, z]

Crystal data

C19H19N3O2 F(000) = 680
Mr = 321.37 Dx = 1.267 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3038 reflections
a = 12.030 (2) Å θ = 3.0–25.2°
b = 7.1400 (14) Å µ = 0.08 mm1
c = 20.210 (4) Å T = 298 K
β = 104.01 (3)° Block, colourless
V = 1684.4 (6) Å3 0.28 × 0.27 × 0.23 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer 3038 independent reflections
Radiation source: fine-focus sealed tube 2101 reflections with I > 2σ(I)
graphite Rint = 0.026
φ and ω scans θmax = 25.2°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −14→14
Tmin = 0.965, Tmax = 0.971 k = −8→8
12992 measured reflections l = −24→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.1685P] where P = (Fo2 + 2Fc2)/3
3038 reflections (Δ/σ)max = 0.003
220 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.54536 (10) 0.08488 (19) 0.09989 (7) 0.0484 (4)
N2 0.84821 (10) 0.10229 (18) 0.18740 (7) 0.0478 (4)
N3 0.82904 (11) 0.27459 (18) 0.15274 (7) 0.0489 (4)
O1 0.74035 (9) −0.16626 (16) 0.18989 (7) 0.0607 (4)
O2 0.35066 (11) 0.19101 (19) 0.01845 (7) 0.0721 (4)
H2 0.4177 0.1999 0.0399 0.108*
C1 1.03702 (13) 0.0611 (2) 0.16517 (8) 0.0500 (4)
H1 1.0178 0.1448 0.1289 0.060*
C2 1.14339 (14) −0.0241 (3) 0.18084 (9) 0.0569 (5)
H2A 1.1959 0.0045 0.1553 0.068*
C3 1.17288 (15) −0.1505 (3) 0.23369 (11) 0.0659 (5)
H3 1.2445 −0.2076 0.2436 0.079*
C4 1.09553 (15) −0.1913 (3) 0.27139 (10) 0.0667 (5)
H4 1.1144 −0.2776 0.3068 0.080*
C5 0.98929 (14) −0.1047 (2) 0.25717 (9) 0.0549 (5)
H5 0.9378 −0.1311 0.2836 0.066*
C6 0.95980 (12) 0.0212 (2) 0.20351 (8) 0.0433 (4)
C7 0.74648 (13) −0.0029 (2) 0.17136 (9) 0.0469 (4)
C8 0.66180 (13) 0.1204 (2) 0.13035 (8) 0.0454 (4)
C9 0.71364 (13) 0.2853 (2) 0.12208 (8) 0.0472 (4)
C10 0.66222 (17) 0.4584 (2) 0.08666 (11) 0.0650 (5)
H10A 0.5826 0.4372 0.0659 0.097*
H10B 0.7013 0.4912 0.0521 0.097*
H10C 0.6696 0.5588 0.1191 0.097*
C11 0.89730 (16) 0.4347 (2) 0.18612 (10) 0.0618 (5)
H11A 0.8869 0.5390 0.1552 0.093*
H11B 0.9768 0.4006 0.1986 0.093*
H11C 0.8727 0.4689 0.2263 0.093*
C12 0.49748 (13) −0.0712 (2) 0.10893 (9) 0.0494 (4)
H12 0.5403 −0.1634 0.1362 0.059*
C13 0.37643 (13) −0.1053 (2) 0.07677 (8) 0.0469 (4)
C14 0.30773 (14) 0.0258 (2) 0.03279 (9) 0.0524 (4)
C15 0.19260 (15) −0.0150 (3) 0.00338 (9) 0.0630 (5)
H15 0.1475 0.0710 −0.0258 0.076*
C16 0.14615 (15) −0.1806 (3) 0.01736 (9) 0.0625 (5)
H16 0.0694 −0.2050 −0.0025 0.075*
C17 0.21076 (14) −0.3139 (3) 0.06057 (9) 0.0581 (5)
C18 0.15794 (18) −0.4936 (3) 0.07672 (13) 0.0859 (7)
H18A 0.2150 −0.5676 0.1070 0.129* 0.50
H18B 0.1283 −0.5621 0.0353 0.129* 0.50
H18C 0.0968 −0.4660 0.0981 0.129* 0.50
H18D 0.0784 −0.4962 0.0533 0.129* 0.50
H18E 0.1651 −0.5017 0.1250 0.129* 0.50
H18F 0.1966 −0.5978 0.0622 0.129* 0.50
C19 0.32577 (13) −0.2731 (2) 0.08928 (9) 0.0546 (4)
H19 0.3703 −0.3611 0.1178 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0449 (8) 0.0456 (8) 0.0570 (8) 0.0014 (6) 0.0167 (6) −0.0045 (6)
N2 0.0432 (7) 0.0360 (7) 0.0657 (9) −0.0001 (6) 0.0162 (6) 0.0038 (6)
N3 0.0522 (8) 0.0338 (7) 0.0632 (9) −0.0023 (6) 0.0190 (7) 0.0010 (6)
O1 0.0527 (7) 0.0390 (7) 0.0894 (9) −0.0031 (5) 0.0155 (6) 0.0106 (6)
O2 0.0633 (8) 0.0671 (9) 0.0836 (10) 0.0044 (7) 0.0131 (7) 0.0225 (7)
C1 0.0485 (9) 0.0541 (10) 0.0469 (9) −0.0024 (8) 0.0108 (7) −0.0004 (8)
C2 0.0462 (9) 0.0640 (12) 0.0617 (11) −0.0030 (8) 0.0157 (8) −0.0062 (9)
C3 0.0460 (10) 0.0657 (13) 0.0818 (14) 0.0045 (9) 0.0072 (9) 0.0020 (11)
C4 0.0594 (11) 0.0615 (12) 0.0729 (13) 0.0021 (9) 0.0040 (9) 0.0177 (10)
C5 0.0528 (10) 0.0541 (11) 0.0582 (11) −0.0057 (8) 0.0139 (8) 0.0056 (9)
C6 0.0412 (8) 0.0386 (9) 0.0492 (9) −0.0047 (7) 0.0092 (7) −0.0046 (7)
C7 0.0444 (9) 0.0396 (9) 0.0596 (10) −0.0003 (7) 0.0180 (7) −0.0028 (8)
C8 0.0449 (9) 0.0402 (9) 0.0543 (10) 0.0023 (7) 0.0182 (7) −0.0031 (7)
C9 0.0494 (9) 0.0414 (9) 0.0536 (10) 0.0036 (7) 0.0176 (7) −0.0031 (7)
C10 0.0704 (12) 0.0459 (11) 0.0794 (13) 0.0078 (9) 0.0196 (10) 0.0107 (9)
C11 0.0649 (11) 0.0410 (10) 0.0824 (13) −0.0108 (8) 0.0234 (10) −0.0065 (9)
C12 0.0448 (9) 0.0455 (10) 0.0584 (10) 0.0048 (7) 0.0137 (7) −0.0030 (8)
C13 0.0424 (8) 0.0487 (10) 0.0507 (9) 0.0034 (7) 0.0135 (7) −0.0051 (8)
C14 0.0536 (10) 0.0530 (11) 0.0520 (10) 0.0042 (8) 0.0152 (8) 0.0028 (8)
C15 0.0528 (10) 0.0784 (14) 0.0532 (11) 0.0096 (10) 0.0042 (8) 0.0047 (10)
C16 0.0475 (10) 0.0798 (14) 0.0563 (11) −0.0026 (9) 0.0051 (8) −0.0087 (10)
C17 0.0498 (9) 0.0611 (11) 0.0628 (11) −0.0055 (9) 0.0122 (8) −0.0103 (9)
C18 0.0655 (13) 0.0754 (15) 0.1124 (18) −0.0206 (11) 0.0128 (12) −0.0031 (13)
C19 0.0469 (9) 0.0509 (10) 0.0647 (11) 0.0027 (8) 0.0108 (8) −0.0023 (9)

Geometric parameters (Å, °)

N1—C12 1.288 (2) C10—H10A 0.9600
N1—C8 1.410 (2) C10—H10B 0.9600
N2—C7 1.405 (2) C10—H10C 0.9600
N2—N3 1.4068 (18) C11—H11A 0.9600
N2—C6 1.425 (2) C11—H11B 0.9600
N3—C9 1.379 (2) C11—H11C 0.9600
N3—C11 1.472 (2) C12—C13 1.464 (2)
O1—C7 1.2330 (19) C12—H12 0.9300
O2—C14 1.347 (2) C13—C19 1.395 (2)
O2—H2 0.8200 C13—C14 1.412 (2)
C1—C6 1.376 (2) C14—C15 1.399 (2)
C1—C2 1.383 (2) C15—C16 1.366 (3)
C1—H1 0.9300 C15—H15 0.9300
C2—C3 1.378 (3) C16—C17 1.394 (3)
C2—H2A 0.9300 C16—H16 0.9300
C3—C4 1.369 (3) C17—C19 1.395 (2)
C3—H3 0.9300 C17—C18 1.503 (3)
C4—C5 1.386 (3) C18—H18A 0.9600
C4—H4 0.9300 C18—H18B 0.9600
C5—C6 1.387 (2) C18—H18C 0.9600
C5—H5 0.9300 C18—H18D 0.9600
C7—C8 1.446 (2) C18—H18E 0.9600
C8—C9 1.361 (2) C18—H18F 0.9600
C9—C10 1.486 (2) C19—H19 0.9300
C12—N1—C8 121.67 (14) H11A—C11—H11C 109.5
C7—N2—N3 108.89 (12) H11B—C11—H11C 109.5
C7—N2—C6 123.74 (13) N1—C12—C13 120.77 (15)
N3—N2—C6 120.05 (12) N1—C12—H12 119.6
C9—N3—N2 107.34 (12) C13—C12—H12 119.6
C9—N3—C11 123.52 (14) C19—C13—C14 117.94 (15)
N2—N3—C11 116.40 (13) C19—C13—C12 119.56 (15)
C14—O2—H2 109.5 C14—C13—C12 122.50 (16)
C6—C1—C2 119.58 (16) O2—C14—C15 118.85 (16)
C6—C1—H1 120.2 O2—C14—C13 121.29 (15)
C2—C1—H1 120.2 C15—C14—C13 119.86 (17)
C3—C2—C1 121.07 (18) C16—C15—C14 120.31 (17)
C3—C2—H2A 119.5 C16—C15—H15 119.8
C1—C2—H2A 119.5 C14—C15—H15 119.8
C4—C3—C2 119.25 (17) C15—C16—C17 121.76 (17)
C4—C3—H3 120.4 C15—C16—H16 119.1
C2—C3—H3 120.4 C17—C16—H16 119.1
C3—C4—C5 120.45 (18) C16—C17—C19 117.67 (17)
C3—C4—H4 119.8 C16—C17—C18 121.21 (17)
C5—C4—H4 119.8 C19—C17—C18 121.12 (18)
C4—C5—C6 119.99 (17) C17—C18—H18A 109.5
C4—C5—H5 120.0 C17—C18—H18B 109.5
C6—C5—H5 120.0 H18A—C18—H18B 109.5
C1—C6—C5 119.64 (15) C17—C18—H18C 109.5
C1—C6—N2 120.95 (15) H18A—C18—H18C 109.5
C5—C6—N2 119.37 (14) H18B—C18—H18C 109.5
O1—C7—N2 123.25 (15) C17—C18—H18D 109.5
O1—C7—C8 131.64 (15) H18A—C18—H18D 141.1
N2—C7—C8 105.10 (14) H18B—C18—H18D 56.3
C9—C8—N1 122.57 (15) H18C—C18—H18D 56.3
C9—C8—C7 108.46 (14) C17—C18—H18E 109.5
N1—C8—C7 128.93 (15) H18A—C18—H18E 56.3
C8—C9—N3 109.78 (14) H18B—C18—H18E 141.1
C8—C9—C10 128.96 (15) H18C—C18—H18E 56.3
N3—C9—C10 121.26 (15) H18D—C18—H18E 109.5
C9—C10—H10A 109.5 C17—C18—H18F 109.5
C9—C10—H10B 109.5 H18A—C18—H18F 56.3
H10A—C10—H10B 109.5 H18B—C18—H18F 56.3
C9—C10—H10C 109.5 H18C—C18—H18F 141.1
H10A—C10—H10C 109.5 H18D—C18—H18F 109.5
H10B—C10—H10C 109.5 H18E—C18—H18F 109.5
N3—C11—H11A 109.5 C13—C19—C17 122.45 (16)
N3—C11—H11B 109.5 C13—C19—H19 118.8
H11A—C11—H11B 109.5 C17—C19—H19 118.8
N3—C11—H11C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···N1 0.82 1.90 2.6275 (19) 148.
C10—H10C···O1i 0.96 2.46 3.386 (2) 163.

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2375).

References

  1. Alemi, A. A. & Shaabani, B. (2000). Acta Chim. Slov.47, 363–369.
  2. Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Kim, G. J. & Shin, J. H. (1999). Catal. Lett.63, 83–89.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  10. Yan, G.-B., Yang, M.-H. & Zheng, Y.-F. (2006). Acta Cryst. E62, m3481–m3482.
  11. You, Z.-L., Wang, J. & Chi, J.-Y. (2006). Acta Cryst. E62, o1652–o1653.
  12. Zheng, Y.-F., Yan, G.-B. & Gu, Y.-B. (2006). Acta Cryst. E62, o5134–o5135.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808029930/dn2375sup1.cif

e-64-o2017-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029930/dn2375Isup2.hkl

e-64-o2017-Isup2.hkl (146.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES