Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 24;64(Pt 10):o1989. doi: 10.1107/S1600536808029929

Ethyl 3,5-dimethyl-1H-pyrrole-2-carboxyl­ate

Cláudia T Arranja a, Manuela Ramos Silva b,*, Ana Matos Beja b, Ana F P V Ferreira a, Abílio J F N Sobral a
PMCID: PMC2959273  PMID: 21201188

Abstract

In the title compound, C9H13NO2, there are two independent mol­ecules per asymmetric unit. The mol­ecules are very similar and almost planar, with the ethoxy­carbonyl group anti to the pyrrole N atom. The two independent mol­ecules are joined into dimeric units by strong hydrogen bonds between NH groups and carbonyl O atoms.

Related literature

For general background, see: Bonnett (1995, 2000). For related structures, see: Paixão et al. (2002), Ramos Silva et al. (2002); Sobral & Rocha Gonsalves (2001).graphic file with name e-64-o1989-scheme1.jpg

Experimental

Crystal data

  • C9H13NO2

  • M r = 167.20

  • Triclinic, Inline graphic

  • a = 8.1357 (2) Å

  • b = 10.5568 (2) Å

  • c = 12.1428 (2) Å

  • α = 101.5451 (13)°

  • β = 97.8791 (14)°

  • γ = 110.4821 (14)°

  • V = 932.52 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.25 × 0.20 × 0.15 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000) T min = 0.899, T max = 0.987

  • 20370 measured reflections

  • 4456 independent reflections

  • 2368 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.182

  • S = 1.03

  • 4456 reflections

  • 223 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808029929/bt2791sup1.cif

e-64-o1989-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029929/bt2791Isup2.hkl

e-64-o1989-Isup2.hkl (218.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.86 2.02 2.857 (2) 166
N2—H2⋯O2 0.86 2.00 2.834 (2) 163

Acknowledgments

This work was supported by Fundação para a Ciência e a Tecnologia (FCT) under project POCI/AMB/55281/2004.

supplementary crystallographic information

Comment

Photodynamic therapy (PDT) is a developing method for the treatment of carcinomas and sarcomas. It consists in a selective absorption of a photosensitizer in a tumor, followed by irradiation with light of a selected wavelength, originating tumor necrosis. The fewer side effects of this therapeutic method when compared to chemotherapy and radiotherapy have prompted the search for new and more efficient photosensitizers, namely porphyrins (Bonnett, 1995, 2000). Pyrroles are building blocks for the synthesis of porphyrins and following our previous structural studies on pyrrole chemistry (Sobral & Rocha Gonsalves, 2001; Ramos Silva et al., 2002; Paixão et al., 2002) we present here the title compound ethyl 3,5-dimethyl-1H-pyrrole-2-carboxylate, (I), Fig. 1. There are two independent molecules per asymmetric unit. The two molecules are very similar and almost planar with the angle between molecular planes being 3.87 (5)°. The molecules show an eclipsed conformation, when viewed along the C1—C7 direction, with the ethoxycarbonylgroup anti to the pyrrole N atom. The molecules are grouped in dimers by strong hydrogen bonds between N—H groups and carbonyl O atoms (Fig.1, Table 1). The dimers stack in planes approximately 5 Å apart (Fig.2).

Experimental

The ethyl 3,5-dimethyl-1H-pyrrole-2-carboxylate was prepared by a Knorr-type reaction from the condensation of acetylacetone and ethyl oximinoacetoacetate.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with C—H=0.93 Å, N—H=0.86 Å, Uiso(H)=1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

ORTEPII (Johnson, 1976) plot of the title compound. Displacement ellipsoids are drawn at the 50% level. The H-bonds are represented as dashed lines.

Fig. 2.

Fig. 2.

Packing diagram of the title compound.

Crystal data

C9H13NO2 Z = 4
Mr = 167.20 F(000) = 360
Triclinic, P1 Dx = 1.191 Mg m3
a = 8.1357 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.5568 (2) Å Cell parameters from 3873 reflections
c = 12.1428 (2) Å θ = 2.4–23.9°
α = 101.5451 (13)° µ = 0.08 mm1
β = 97.8791 (14)° T = 293 K
γ = 110.4821 (14)° Prism, colourless
V = 932.52 (4) Å3 0.25 × 0.20 × 0.15 mm

Data collection

Bruker APEX CCD area-detector diffractometer 4456 independent reflections
Radiation source: fine-focus sealed tube 2368 reflections with I > 2σ(I)
graphite Rint = 0.028
φ and ω scans θmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) h = −10→10
Tmin = 0.899, Tmax = 0.987 k = −13→13
20370 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0939P)2 + 0.0508P] where P = (Fo2 + 2Fc2)/3
4456 reflections (Δ/σ)max < 0.001
223 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.2122 (2) 0.18401 (15) 0.96119 (12) 0.0526 (4)
H1 0.1472 0.1689 0.8941 0.063*
C1 0.2894 (2) 0.31179 (18) 1.04326 (14) 0.0483 (4)
C2 0.3837 (3) 0.29357 (19) 1.13867 (15) 0.0535 (5)
C3 0.3587 (3) 0.1515 (2) 1.11083 (17) 0.0620 (5)
H3 0.4060 0.1083 1.1589 0.074*
C4 0.2537 (3) 0.08658 (19) 1.00165 (17) 0.0561 (5)
C5 0.1877 (3) −0.0621 (2) 0.92988 (19) 0.0745 (6)
H5A 0.0653 −0.0912 0.8891 0.112*
H5B 0.1938 −0.1218 0.9790 0.112*
H5C 0.2617 −0.0684 0.8756 0.112*
C6 0.4927 (3) 0.4029 (2) 1.24868 (16) 0.0700 (6)
H6A 0.5941 0.4716 1.2331 0.105*
H6B 0.5346 0.3594 1.3024 0.105*
H6C 0.4193 0.4476 1.2810 0.105*
C7 0.2626 (2) 0.43124 (19) 1.01696 (15) 0.0497 (4)
C8 0.3246 (3) 0.67311 (19) 1.08651 (16) 0.0598 (5)
H8A 0.1987 0.6598 1.0744 0.072*
H8B 0.3685 0.6956 1.0196 0.072*
C9 0.4325 (3) 0.7891 (2) 1.19379 (19) 0.0736 (6)
H9A 0.3901 0.7642 1.2595 0.110*
H9B 0.4191 0.8742 1.1869 0.110*
H9C 0.5573 0.8030 1.2035 0.110*
O1 0.34589 (17) 0.54785 (12) 1.10374 (10) 0.0571 (4)
O2 0.1739 (2) 0.42886 (14) 0.92727 (11) 0.0697 (4)
N2 −0.03335 (19) 0.33131 (15) 0.69754 (12) 0.0514 (4)
H2 0.0341 0.3455 0.7635 0.062*
C10 −0.0692 (3) 0.43124 (19) 0.65748 (16) 0.0532 (5)
C11 −0.1793 (3) 0.3672 (2) 0.54923 (17) 0.0581 (5)
H11 −0.2237 0.4120 0.5012 0.070*
C12 −0.2140 (2) 0.22325 (19) 0.52282 (15) 0.0511 (5)
C13 −0.1210 (2) 0.20295 (18) 0.61697 (14) 0.0470 (4)
C14 −0.3308 (3) 0.1161 (2) 0.41335 (16) 0.0666 (6)
H14A −0.2676 0.0606 0.3829 0.100*
H14B −0.3600 0.1628 0.3580 0.100*
H14C −0.4397 0.0564 0.4290 0.100*
C15 0.0049 (3) 0.58075 (19) 0.72855 (18) 0.0681 (6)
H15A −0.0667 0.5910 0.7837 0.102*
H15B 0.0018 0.6407 0.6791 0.102*
H15C 0.1270 0.6063 0.7684 0.102*
C16 −0.1000 (3) 0.08222 (19) 0.64427 (15) 0.0525 (5)
C17 −0.1825 (3) −0.16323 (19) 0.58381 (18) 0.0635 (5)
H17A −0.2223 −0.1772 0.6538 0.076*
H17B −0.0591 −0.1565 0.5933 0.076*
C18 −0.3012 (3) −0.2831 (2) 0.4826 (2) 0.0777 (7)
H18A −0.4226 −0.2880 0.4734 0.116*
H18B −0.2979 −0.3691 0.4953 0.116*
H18C −0.2593 −0.2690 0.4141 0.116*
O3 −0.19388 (17) −0.03673 (13) 0.56183 (10) 0.0574 (4)
O4 −0.0063 (2) 0.08520 (14) 0.73228 (12) 0.0806 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0640 (10) 0.0477 (9) 0.0397 (8) 0.0212 (8) 0.0025 (7) 0.0053 (7)
C1 0.0532 (10) 0.0434 (10) 0.0407 (9) 0.0155 (8) 0.0037 (8) 0.0055 (8)
C2 0.0575 (11) 0.0533 (11) 0.0445 (10) 0.0198 (9) 0.0041 (8) 0.0099 (8)
C3 0.0759 (14) 0.0568 (12) 0.0565 (12) 0.0307 (11) 0.0067 (10) 0.0189 (10)
C4 0.0674 (12) 0.0478 (11) 0.0552 (11) 0.0256 (9) 0.0123 (9) 0.0133 (9)
C5 0.0935 (16) 0.0467 (12) 0.0772 (15) 0.0282 (11) 0.0119 (12) 0.0069 (10)
C6 0.0797 (15) 0.0690 (14) 0.0472 (11) 0.0236 (11) −0.0088 (10) 0.0103 (10)
C7 0.0534 (11) 0.0470 (11) 0.0408 (10) 0.0160 (8) 0.0037 (8) 0.0059 (8)
C8 0.0741 (13) 0.0482 (11) 0.0566 (12) 0.0256 (10) 0.0108 (10) 0.0124 (9)
C9 0.0911 (16) 0.0509 (12) 0.0669 (14) 0.0229 (11) 0.0142 (12) 0.0014 (10)
O1 0.0726 (9) 0.0436 (7) 0.0455 (7) 0.0207 (6) −0.0015 (6) 0.0050 (6)
O2 0.0918 (11) 0.0559 (8) 0.0498 (8) 0.0314 (8) −0.0130 (7) 0.0039 (6)
N2 0.0561 (9) 0.0459 (9) 0.0428 (8) 0.0157 (7) 0.0011 (7) 0.0061 (7)
C10 0.0583 (11) 0.0456 (11) 0.0535 (11) 0.0191 (9) 0.0097 (9) 0.0126 (9)
C11 0.0639 (12) 0.0531 (12) 0.0538 (11) 0.0222 (9) 0.0002 (9) 0.0166 (9)
C12 0.0511 (10) 0.0515 (11) 0.0439 (10) 0.0166 (9) 0.0035 (8) 0.0089 (8)
C13 0.0496 (10) 0.0423 (10) 0.0403 (9) 0.0133 (8) 0.0035 (8) 0.0050 (7)
C14 0.0691 (13) 0.0649 (13) 0.0491 (11) 0.0186 (11) −0.0086 (10) 0.0081 (10)
C15 0.0796 (15) 0.0451 (12) 0.0702 (13) 0.0218 (10) 0.0066 (11) 0.0068 (10)
C16 0.0580 (11) 0.0476 (11) 0.0426 (10) 0.0169 (9) 0.0017 (9) 0.0050 (8)
C17 0.0701 (13) 0.0484 (12) 0.0643 (13) 0.0226 (10) 0.0037 (10) 0.0073 (10)
C18 0.0850 (16) 0.0475 (12) 0.0825 (16) 0.0204 (11) 0.0047 (12) −0.0019 (11)
O3 0.0664 (8) 0.0428 (7) 0.0508 (8) 0.0179 (6) −0.0027 (6) 0.0029 (6)
O4 0.1088 (12) 0.0548 (9) 0.0572 (9) 0.0290 (8) −0.0237 (8) 0.0037 (7)

Geometric parameters (Å, °)

N1—C4 1.346 (2) N2—C10 1.348 (2)
N1—C1 1.380 (2) N2—C13 1.380 (2)
N1—H1 0.8600 N2—H2 0.8600
C1—C2 1.384 (2) C10—C11 1.373 (3)
C1—C7 1.440 (2) C10—C15 1.498 (2)
C2—C3 1.404 (3) C11—C12 1.405 (2)
C2—C6 1.498 (3) C11—H11 0.9300
C3—C4 1.369 (3) C12—C13 1.378 (2)
C3—H3 0.9300 C12—C14 1.500 (2)
C4—C5 1.498 (3) C13—C16 1.438 (3)
C5—H5A 0.9600 C14—H14A 0.9600
C5—H5B 0.9600 C14—H14B 0.9600
C5—H5C 0.9600 C14—H14C 0.9600
C6—H6A 0.9600 C15—H15A 0.9600
C6—H6B 0.9600 C15—H15B 0.9600
C6—H6C 0.9600 C15—H15C 0.9600
C7—O2 1.212 (2) C16—O4 1.213 (2)
C7—O1 1.336 (2) C16—O3 1.333 (2)
C8—O1 1.443 (2) C17—O3 1.444 (2)
C8—C9 1.504 (3) C17—C18 1.497 (3)
C8—H8A 0.9700 C17—H17A 0.9700
C8—H8B 0.9700 C17—H17B 0.9700
C9—H9A 0.9600 C18—H18A 0.9600
C9—H9B 0.9600 C18—H18B 0.9600
C9—H9C 0.9600 C18—H18C 0.9600
C4—N1—C1 109.98 (15) C10—N2—C13 109.89 (15)
C4—N1—H1 125.0 C10—N2—H2 125.1
C1—N1—H1 125.0 C13—N2—H2 125.1
N1—C1—C2 107.62 (15) N2—C10—C11 107.26 (16)
N1—C1—C7 119.00 (15) N2—C10—C15 121.47 (17)
C2—C1—C7 133.38 (16) C11—C10—C15 131.26 (18)
C1—C2—C3 105.90 (16) C10—C11—C12 108.90 (17)
C1—C2—C6 127.36 (17) C10—C11—H11 125.6
C3—C2—C6 126.73 (17) C12—C11—H11 125.6
C4—C3—C2 109.18 (17) C13—C12—C11 106.15 (16)
C4—C3—H3 125.4 C13—C12—C14 128.26 (17)
C2—C3—H3 125.4 C11—C12—C14 125.59 (17)
N1—C4—C3 107.32 (16) C12—C13—N2 107.79 (15)
N1—C4—C5 121.31 (18) C12—C13—C16 133.95 (16)
C3—C4—C5 131.37 (19) N2—C13—C16 118.26 (15)
C4—C5—H5A 109.5 C12—C14—H14A 109.5
C4—C5—H5B 109.5 C12—C14—H14B 109.5
H5A—C5—H5B 109.5 H14A—C14—H14B 109.5
C4—C5—H5C 109.5 C12—C14—H14C 109.5
H5A—C5—H5C 109.5 H14A—C14—H14C 109.5
H5B—C5—H5C 109.5 H14B—C14—H14C 109.5
C2—C6—H6A 109.5 C10—C15—H15A 109.5
C2—C6—H6B 109.5 C10—C15—H15B 109.5
H6A—C6—H6B 109.5 H15A—C15—H15B 109.5
C2—C6—H6C 109.5 C10—C15—H15C 109.5
H6A—C6—H6C 109.5 H15A—C15—H15C 109.5
H6B—C6—H6C 109.5 H15B—C15—H15C 109.5
O2—C7—O1 122.56 (16) O4—C16—O3 121.97 (17)
O2—C7—C1 124.92 (16) O4—C16—C13 124.71 (16)
O1—C7—C1 112.52 (15) O3—C16—C13 113.32 (15)
O1—C8—C9 106.73 (15) O3—C17—C18 107.56 (16)
O1—C8—H8A 110.4 O3—C17—H17A 110.2
C9—C8—H8A 110.4 C18—C17—H17A 110.2
O1—C8—H8B 110.4 O3—C17—H17B 110.2
C9—C8—H8B 110.4 C18—C17—H17B 110.2
H8A—C8—H8B 108.6 H17A—C17—H17B 108.5
C8—C9—H9A 109.5 C17—C18—H18A 109.5
C8—C9—H9B 109.5 C17—C18—H18B 109.5
H9A—C9—H9B 109.5 H18A—C18—H18B 109.5
C8—C9—H9C 109.5 C17—C18—H18C 109.5
H9A—C9—H9C 109.5 H18A—C18—H18C 109.5
H9B—C9—H9C 109.5 H18B—C18—H18C 109.5
C7—O1—C8 116.76 (13) C16—O3—C17 116.64 (14)
C4—N1—C1—C2 0.3 (2) C13—N2—C10—C11 −0.8 (2)
C4—N1—C1—C7 179.58 (15) C13—N2—C10—C15 178.44 (16)
N1—C1—C2—C3 −0.4 (2) N2—C10—C11—C12 0.8 (2)
C7—C1—C2—C3 −179.57 (19) C15—C10—C11—C12 −178.28 (19)
N1—C1—C2—C6 178.72 (18) C10—C11—C12—C13 −0.6 (2)
C7—C1—C2—C6 −0.4 (3) C10—C11—C12—C14 179.03 (18)
C1—C2—C3—C4 0.4 (2) C11—C12—C13—N2 0.1 (2)
C6—C2—C3—C4 −178.74 (19) C14—C12—C13—N2 −179.49 (17)
C1—N1—C4—C3 0.0 (2) C11—C12—C13—C16 −179.8 (2)
C1—N1—C4—C5 −179.76 (16) C14—C12—C13—C16 0.6 (3)
C2—C3—C4—N1 −0.3 (2) C10—N2—C13—C12 0.4 (2)
C2—C3—C4—C5 179.4 (2) C10—N2—C13—C16 −179.68 (15)
N1—C1—C7—O2 1.0 (3) C12—C13—C16—O4 177.7 (2)
C2—C1—C7—O2 −179.9 (2) N2—C13—C16—O4 −2.2 (3)
N1—C1—C7—O1 −179.56 (14) C12—C13—C16—O3 −1.7 (3)
C2—C1—C7—O1 −0.5 (3) N2—C13—C16—O3 178.41 (15)
O2—C7—O1—C8 0.4 (3) O4—C16—O3—C17 1.7 (3)
C1—C7—O1—C8 −178.98 (15) C13—C16—O3—C17 −178.86 (15)
C9—C8—O1—C7 −178.86 (15) C18—C17—O3—C16 178.37 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O4 0.86 2.02 2.857 (2) 166.
N2—H2···O2 0.86 2.00 2.834 (2) 163.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2791).

References

  1. Bonnett, R. (1995). Chem. Soc. Rev.24, 19–33.
  2. Bonnett, R. (2000). Chemical Aspects of Photodynamic Therapy Amsterdam: Gordon and Breach Science Publishers.
  3. Bruker (2003). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  5. Paixão, J. A., Ramos Silva, M., Matos Beja, A., Sobral, A. J. F. N., Lopes, S. H. & Rocha Gonsalves, A. M. d′A. (2002). Acta Cryst. C58, o721–o723. [DOI] [PubMed]
  6. Ramos Silva, M., Matos Beja, A., Paixão, J. A., Sobral, A. J. F. N., Lopes, S. H. & Rocha Gonsalves, A. M. d′A. (2002). Acta Cryst. C58, o572–o574. [DOI] [PubMed]
  7. Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sobral, A. J. F. N. & Rocha Gonsalves, A. M. d′A. (2001). J. Porphyrins Phthalocyanines, 5, 861–866.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808029929/bt2791sup1.cif

e-64-o1989-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029929/bt2791Isup2.hkl

e-64-o1989-Isup2.hkl (218.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES