Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 13;64(Pt 10):i69–i70. doi: 10.1107/S1600536808028365

A second polymorph with composition Co3(PO4)2·H2O

Young Hoon Lee a, Jack K Clegg b, Leonard F Lindoy b, G Q Max Lu c, Yu-Chul Park a, Yang Kim d,*
PMCID: PMC2959276  PMID: 21200979

Abstract

Single crystals of Co3(PO4)2·H2O, tricobalt(II) bis­[ortho­phosphate(V)] monohydrate, were obtained under hydro­thermal conditions. The compound is the second polymorph of this composition and is isotypic with its zinc analogue, Zn3(PO4)2·H2O. Three independent Co2+ cations are bridged by two independent orthophosphate anions. Two of the metal cations exhibit a distorted tetra­hedral coordination while the third exhibits a considerably distorted [5 + 1] octa­hedral coordination environment with one very long Co—O distance of 2.416 (3) Å. The former cations are bonded to four different phosphate anions, and the latter cation is bonded to four anions (one of which is bidentate) and one water mol­ecule, leading to a framework structure. Additional hydrogen bonds of the type O—H⋯O stabilize this arrangement.

Related literature

Besides crystals of the title compound, crystals of the related phase Co3(PO4)2·4H2O (Lee et al., 2008) were also obtained under hydro­thermal conditions. For a review of metal complexes of organophosphate esters and open-framework metal phosphates, see: Murugavel et al. (2008). For different cobalt(II) phosphates, see: Mellor (1935). The first polymorph of composition Co3(PO4)2·H2O was reported by Anderson et al. (1976), and the crystal structure of the isotypic Zn analogue Zn3(PO4)2·H2O was described by Riou et al. (1986).

Experimental

Crystal data

  • Co3(PO4)2·H2O

  • M r = 384.75

  • Monoclinic, Inline graphic

  • a = 8.7038 (15) Å

  • b = 4.8667 (9) Å

  • c = 16.705 (3) Å

  • β = 95.670 (3)°

  • V = 704.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.47 mm−1

  • T = 150 (2) K

  • 0.46 × 0.14 × 0.08 mm

Data collection

  • Siemens SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999) T min = 0.247, T max = 0.554

  • 6569 measured reflections

  • 1697 independent reflections

  • 1603 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.095

  • S = 1.07

  • 1697 reflections

  • 133 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −1.39 e Å−3

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT and XPREP (Siemens, 1995); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), WebLab ViewerPro (Molecular Simulations, 2000) and POV-RAY (Cason, 2002).; software used to prepare material for publication: enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808028365/wm2194sup1.cif

e-64-00i69-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028365/wm2194Isup2.hkl

e-64-00i69-Isup2.hkl (83.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Co1—O3 1.897 (3)
Co1—O4 1.941 (3)
Co1—O2 1.992 (3)
Co1—O1 2.002 (3)
Co2—O9 1.887 (3)
Co2—O5 1.949 (3)
Co2—O1 1.986 (3)
Co2—O2i 2.054 (3)
Co3—O6 2.019 (3)
Co3—O7 2.061 (3)
Co3—O8 2.065 (3)
Co3—O8ii 2.075 (3)
Co3—O5iii 2.108 (3)
Co3—O3iv 2.416 (3)
P1—O6 1.513 (3)
P1—O4i 1.534 (3)
P1—O2v 1.560 (3)
P1—O1 1.561 (3)
P2—O9 1.511 (3)
P2—O8vi 1.544 (3)
P2—O3vii 1.549 (3)
P2—O5vi 1.565 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H2⋯O6iii 0.90 (3) 1.86 (4) 2.753 (4) 170 (5)
O7—H1⋯O4viii 0.903 (10) 1.864 (15) 2.758 (4) 171 (5)

Symmetry codes: (iii) Inline graphic; (viii) Inline graphic.

Acknowledgments

We gratefully acknowledge the Brain Korea 21 programme and the Australian Research Council for support.

supplementary crystallographic information

Comment

Synthesis and structural investigations of transition-metal phosphates under various conditions, including high temperature and high pressure, have been investigated for many years (Murugavel et al., 2008). This is not only because of the multifarious structural chemistry, but also due to many potential applications. For a listing of reviews on these materials, see Lee et al. (2008). We are currently investigating the synthesis of a variety of similar functional materials through templation effects under hydrothermal conditions. The title compound, Co3(PO4)2.H2O, (I), and the related compound Co3(PO4)2.4H2O (Lee et al., 2008) were synthesized as a part of these studies.

In the past, many different cobalt(II) orthophosphates have been described, ranging from the anhydrous form Co3(PO4)2 to its corresponding octahydrate (Mellor, 1935). In 1976 Anderson et al. reported a first polymorph of Co3(PO4)2.H2O formed under high pressure conditions. The second polymorph of Co3(PO4)2.H2O presented here has a different unit cell and a considerably different cell volume (638.3 (Anderson et al., 1976) versus 704.1 Å3 (this study)) and exhibits also a different assembly of the structural building units. The second polymorph (I) is isotypic with its Zn analogue Zn3(PO4)2.H2O (Riou et al., 1986).

The structure of (I) contains three different Co2+ centres bridged by orthophosphate anions (Fig 1). The coordination spheres of Co1 and Co2 are distorted tetrahedral while that of Co3 is distorted octahedral, with one considerably longer Co—O bond of 2.416 (3) Å (Table 1). Co1 and Co2 are bonded to the O atoms of four phosphate ligands, whereas Co3 is bonded to five O atoms of four phosphate ligands (one bidentate) and the sixth coordination site is occupied by a water molecule. This assembly leads to the formation of a three-dimensional framework (Fig. 2), which is stabilized by additional O—H···O hydrogen bonds (Table 2).

Experimental

Conditions of the hydrothermal single crystal growth of the hydrous cobalt(II) orthophosphates Co3(PO4)2.H2O and Co3(PO4)2.4 H2O were described in detail in a preceding communication (Lee et al., 2008).

Refinement

Water H atoms were located in difference Fourier maps and were refined with Uiso(H) values fixed at 1.5Ueq of the parent O atoms. O—H bond length restraints of 0.89 (1) Å were also employed. The highest peak and the deepest hole in the final Fourier map are located 1.74 Å from O1 and 0.20 Å from P1, respectively.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of compound (I), drawn with displacement parameters at the 50% probability level. H atoms are given as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A schematic representation of a section of the three-dimensional network of (I) in a projection along [010]. Hydrogen atoms are omitted for clarity.

Crystal data

Co3(PO4)2·H2O F(000) = 740
Mr = 384.75 Dx = 3.629 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4684 reflections
a = 8.7038 (15) Å θ = 2.5–28.4°
b = 4.8667 (9) Å µ = 7.47 mm1
c = 16.705 (3) Å T = 150 K
β = 95.670 (3)° Plate, purple
V = 704.1 (2) Å3 0.46 × 0.14 × 0.08 mm
Z = 4

Data collection

Siemens SMART 1000 CCD diffractometer 1697 independent reflections
Radiation source: sealed tube 1603 reflections with I > 2σ(I)
graphite Rint = 0.026
ω scans θmax = 28.4°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1999) h = −11→11
Tmin = 0.247, Tmax = 0.554 k = −6→6
6569 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: difference Fourier map
wR(F2) = 0.095 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0597P)2 + 3.2629P] where P = (Fo2 + 2Fc2)/3
1697 reflections (Δ/σ)max < 0.001
133 parameters Δρmax = 0.74 e Å3
2 restraints Δρmin = −1.39 e Å3

Special details

Experimental. The crystal was coated in Exxon Paratone N hydrocarbon oil and mounted on a thin mohair fibre attached to a copper pin. Upon mounting on the diffractometer, the crystal was quenched to 150(K) under a cold nitrogen gas stream supplied by an Oxford Cryosystems Cryostream.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.32855 (5) 0.20270 (9) 0.94291 (3) 0.00253 (14)
Co2 0.56640 (5) −0.20252 (9) 0.84576 (3) 0.00303 (15)
Co3 0.92910 (6) 0.49852 (10) 0.82254 (3) 0.00814 (16)
P1 0.68190 (11) 0.29320 (19) 0.94510 (6) 0.0086 (2)
P2 0.23599 (11) −0.51187 (19) 0.78087 (6) 0.0087 (2)
O1 0.5357 (3) 0.1481 (6) 0.90286 (17) 0.0114 (5)
O2 0.3621 (3) 0.3976 (6) 1.04804 (16) 0.0106 (5)
O3 0.1907 (3) 0.3427 (6) 0.85760 (17) 0.0119 (5)
O4 0.2836 (3) −0.1747 (6) 0.96996 (17) 0.0121 (6)
O5 0.7445 (3) −0.2368 (6) 0.78428 (17) 0.0116 (5)
O6 0.8153 (3) 0.2545 (6) 0.89463 (17) 0.0120 (5)
O7 0.9749 (4) 0.7679 (6) 0.91711 (18) 0.0137 (6)
O8 0.9060 (3) 0.1703 (6) 0.74391 (17) 0.0108 (5)
O9 0.3852 (3) −0.3512 (6) 0.79103 (18) 0.0148 (6)
H1 1.0769 (18) 0.797 (12) 0.929 (3) 0.022*
H2 0.933 (6) 0.936 (5) 0.909 (3) 0.022*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0013 (2) 0.0038 (2) 0.0025 (2) 0.00007 (15) −0.00013 (17) 0.00053 (15)
Co2 0.0006 (2) 0.0045 (3) 0.0040 (2) −0.00041 (15) 0.00015 (17) −0.00098 (15)
Co3 0.0077 (3) 0.0083 (3) 0.0088 (3) −0.00123 (17) 0.00306 (19) −0.00064 (17)
P1 0.0070 (5) 0.0090 (5) 0.0098 (5) −0.0004 (3) 0.0014 (3) −0.0002 (3)
P2 0.0067 (5) 0.0103 (4) 0.0091 (4) 0.0003 (3) 0.0008 (3) 0.0001 (3)
O1 0.0101 (13) 0.0112 (12) 0.0129 (13) −0.0009 (10) 0.0004 (10) −0.0005 (10)
O2 0.0114 (13) 0.0106 (13) 0.0099 (13) 0.0026 (10) 0.0011 (10) −0.0003 (10)
O3 0.0121 (13) 0.0133 (13) 0.0102 (13) −0.0003 (11) 0.0007 (11) 0.0014 (10)
O4 0.0135 (14) 0.0116 (13) 0.0110 (13) −0.0005 (10) −0.0004 (11) 0.0009 (10)
O5 0.0108 (14) 0.0131 (12) 0.0114 (13) 0.0007 (10) 0.0041 (10) 0.0008 (10)
O6 0.0106 (14) 0.0132 (12) 0.0127 (13) −0.0009 (11) 0.0035 (11) 0.0007 (10)
O7 0.0110 (14) 0.0132 (13) 0.0164 (14) 0.0012 (11) −0.0014 (11) −0.0015 (11)
O8 0.0075 (13) 0.0122 (13) 0.0131 (13) −0.0006 (10) 0.0026 (10) −0.0022 (10)
O9 0.0109 (14) 0.0163 (13) 0.0171 (14) −0.0033 (11) 0.0012 (11) −0.0011 (11)

Geometric parameters (Å, °)

Co1—O3 1.897 (3) Co3—O3iv 2.416 (3)
Co1—O4 1.941 (3) Co3—P2v 2.8266 (12)
Co1—O2 1.992 (3) P1—O6 1.513 (3)
Co1—O1 2.002 (3) P1—O4i 1.534 (3)
Co2—O9 1.887 (3) P1—O2vi 1.560 (3)
Co2—O5 1.949 (3) P1—O1 1.561 (3)
Co2—O1 1.986 (3) P2—O9 1.511 (3)
Co2—O2i 2.054 (3) P2—O8vii 1.544 (3)
Co3—O6 2.019 (3) P2—O3viii 1.549 (3)
Co3—O7 2.061 (3) P2—O5vii 1.565 (3)
Co3—O8 2.065 (3) P2—Co3ix 2.8266 (12)
Co3—O8ii 2.075 (3) O7—H1 0.903 (10)
Co3—O5iii 2.108 (3) O7—H2 0.90 (3)
O3—Co1—O4 112.81 (13) O4i—P1—O2vi 108.77 (15)
O3—Co1—O2 121.22 (12) O6—P1—O1 109.15 (16)
O4—Co1—O2 105.11 (12) O4i—P1—O1 108.94 (16)
O3—Co1—O1 108.70 (12) O2vi—P1—O1 105.94 (16)
O4—Co1—O1 99.28 (12) O9—P2—O8vii 112.91 (17)
O2—Co1—O1 107.42 (12) O9—P2—O3viii 115.46 (17)
O9—Co2—O5 112.44 (13) O8vii—P2—O3viii 102.81 (16)
O9—Co2—O1 114.62 (13) O9—P2—O5vii 106.80 (16)
O5—Co2—O1 118.58 (12) O8vii—P2—O5vii 110.75 (16)
O9—Co2—O2i 114.12 (12) O3viii—P2—O5vii 108.04 (16)
O5—Co2—O2i 103.10 (12) O9—P2—Co3ix 141.79 (13)
O1—Co2—O2i 91.48 (11) O8vii—P2—Co3ix 45.96 (10)
O6—Co3—O7 89.20 (12) O3viii—P2—Co3ix 58.69 (11)
O6—Co3—O8 84.37 (11) O5vii—P2—Co3ix 110.73 (12)
O7—Co3—O8 168.15 (12) P1—O1—Co2 117.61 (16)
O6—Co3—O8ii 164.15 (12) P1—O1—Co1 120.63 (16)
O7—Co3—O8ii 93.56 (12) Co2—O1—Co1 116.29 (14)
O8—Co3—O8ii 90.02 (7) P1vi—O2—Co1 120.56 (16)
O6—Co3—O5iii 97.82 (11) P1vi—O2—Co2i 115.98 (15)
O7—Co3—O5iii 85.85 (12) Co1—O2—Co2i 123.17 (15)
O8—Co3—O5iii 104.85 (11) P2iii—O3—Co1 126.29 (18)
O8ii—Co3—O5iii 97.95 (11) P1i—O4—Co1 123.07 (17)
O6—Co3—O3iv 100.18 (11) P2x—O5—Co2 116.94 (17)
O7—Co3—O3iv 84.70 (11) P2x—O5—Co3viii 120.43 (16)
O8—Co3—O3iv 86.65 (10) Co2—O5—Co3viii 120.96 (14)
O8ii—Co3—O3iv 64.61 (10) P1—O6—Co3 135.08 (18)
O5iii—Co3—O3iv 159.51 (11) Co3—O7—H1 113 (4)
O6—Co3—P2v 131.88 (9) Co3—O7—H2 115 (4)
O7—Co3—P2v 94.83 (9) H1—O7—H2 105 (5)
O8—Co3—P2v 82.21 (8) P2x—O8—Co3 129.77 (16)
O8ii—Co3—P2v 32.34 (8) P2x—O8—Co3xi 101.70 (14)
O5iii—Co3—P2v 130.28 (8) Co3—O8—Co3xi 128.53 (14)
O6—P1—O4i 112.20 (17) P2—O9—Co2 157.0 (2)
O6—P1—O2vi 111.63 (16)
O6—P1—O1—Co2 36.4 (2) O1—Co2—O5—P2x −54.5 (2)
O4i—P1—O1—Co2 −86.41 (19) O2i—Co2—O5—P2x −153.51 (18)
O2vi—P1—O1—Co2 156.73 (16) O9—Co2—O5—Co3viii −111.58 (17)
O6—P1—O1—Co1 −170.63 (17) O1—Co2—O5—Co3viii 110.83 (17)
O4i—P1—O1—Co1 66.5 (2) O2i—Co2—O5—Co3viii 11.79 (18)
O2vi—P1—O1—Co1 −50.3 (2) O4i—P1—O6—Co3 −132.6 (2)
O9—Co2—O1—P1 −176.28 (16) O2vi—P1—O6—Co3 −10.2 (3)
O5—Co2—O1—P1 −39.6 (2) O1—P1—O6—Co3 106.6 (3)
O2i—Co2—O1—P1 66.23 (18) O7—Co3—O6—P1 55.9 (3)
O9—Co2—O1—Co1 29.6 (2) O8—Co3—O6—P1 −134.0 (3)
O5—Co2—O1—Co1 166.29 (13) O8ii—Co3—O6—P1 156.2 (3)
O2i—Co2—O1—Co1 −87.91 (15) O5iii—Co3—O6—P1 −29.8 (3)
O3—Co1—O1—P1 122.72 (19) P2v—Co3—O6—P1 151.72 (19)
O4—Co1—O1—P1 −119.25 (19) O6—Co3—O8—P2x 44.9 (2)
O2—Co1—O1—P1 −10.1 (2) O7—Co3—O8—P2x 102.3 (6)
O3—Co1—O1—Co2 −83.97 (17) O8ii—Co3—O8—P2x −150.0 (2)
O4—Co1—O1—Co2 34.06 (16) O5iii—Co3—O8—P2x −51.7 (2)
O2—Co1—O1—Co2 143.21 (14) P2v—Co3—O8—P2x 178.6 (2)
O3—Co1—O2—P1vi −18.9 (2) O6—Co3—O8—Co3xi −134.86 (19)
O4—Co1—O2—P1vi −148.23 (18) O7—Co3—O8—Co3xi −77.4 (6)
O1—Co1—O2—P1vi 106.71 (19) O8ii—Co3—O8—Co3xi 30.29 (16)
O3—Co1—O2—Co2i 154.62 (15) O5iii—Co3—O8—Co3xi 128.52 (17)
O4—Co1—O2—Co2i 25.34 (19) P2v—Co3—O8—Co3xi −1.19 (16)
O1—Co1—O2—Co2i −79.72 (18) O8vii—P2—O9—Co2 116.3 (5)
O4—Co1—O3—P2iii −129.2 (2) O3viii—P2—O9—Co2 −1.5 (6)
O2—Co1—O3—P2iii 105.0 (2) O5vii—P2—O9—Co2 −121.7 (5)
O1—Co1—O3—P2iii −20.1 (2) Co3ix—P2—O9—Co2 69.4 (6)
O3—Co1—O4—P1i −150.21 (19) O5—Co2—O9—P2 137.1 (5)
O2—Co1—O4—P1i −16.1 (2) O1—Co2—O9—P2 −83.5 (6)
O1—Co1—O4—P1i 94.9 (2) O2i—Co2—O9—P2 20.1 (6)
O9—Co2—O5—P2x 83.1 (2)

Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+2, y+1/2, −z+3/2; (iii) x, y+1, z; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) −x+1, −y+1, −z+2; (vii) −x+1, y−1/2, −z+3/2; (viii) x, y−1, z; (ix) x−1, y−1, z; (x) −x+1, y+1/2, −z+3/2; (xi) −x+2, y−1/2, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O7—H2···O6iii 0.90 (3) 1.86 (4) 2.753 (4) 170 (5)
O7—H1···O4v 0.90 (1) 1.86 (2) 2.758 (4) 171 (5)

Symmetry codes: (iii) x, y+1, z; (v) x+1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2194).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  3. Anderson, J., Kostiner, E. & Ruszala, F. A. (1976). Inorg. Chem.15, 2744–2748.
  4. Cason, C. J. (2002). POV-RAY Hallam Oaks Pty Ltd, Williamstown, Victoria, Australia.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Lee, Y. H., Clegg, J. K., Lindoy, L. F., Lu, G. Q. M., Park, Y.-C. & Kim, Y. (2008). Acta Cryst. E64, i67–i68. [DOI] [PMC free article] [PubMed]
  7. Mellor, J. W. (1935). Comprehensive Treatise on Inorganic Theoretical Chemistry, Vol. XIV, p. 852. London: Longmans, Green Co.
  8. Molecular Simulations (2000). WebLab ViewerPro Accelrys Software Inc., San Diego, California, USA.
  9. Murugavel, R., Choudhury, A., Walawalkar, M. G., Pothiraja, R. & Rao, C. N. R. (2008). Chem. Rev.10 doi: 10.1021/cr000119q. [DOI] [PubMed]
  10. Riou, A., Cudennec, Y. & Gerault, Y. (1986). Rev. Chim. Minéral.23, 810–818.
  11. Sheldrick, G. M. (1999). SADABS University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Siemens (1995). SMART, SAINT and XPREP Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808028365/wm2194sup1.cif

e-64-00i69-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028365/wm2194Isup2.hkl

e-64-00i69-Isup2.hkl (83.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES