Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 13;64(Pt 10):o1909. doi: 10.1107/S160053680802833X

2,2′-[Biphenyl-2,2′-diylbis(­oxy)]diacetic acid monohydrate

Muhammad Rabnawaz a, Qamar Ali a, Muhammad Raza Shah a,*, Kuldip Singh b
PMCID: PMC2959279  PMID: 21201118

Abstract

In the crystal structure of the title compound, C16H14O6·H2O, the dihedral angle between the benzene rings is 60.8 (3)°. Mol­ecules are linked through a bifurcated O—H⋯O hydrogen bond, forming a zigzag chain along the b axis. The chains are further linked by O—H⋯O hydrogen bonds mediated by water mol­ecules.

Related literature

For the crystal structures of related compounds, see: Ali, Hussain et al. (2008); Ali, Ibad et al. (2008); Ali, Shah & VanDerveer (2008); Ibad et al. (2008). For biological applications, see: Baudry et al. (2006); Kamoda et al. (2006); Litvinchuk et al. (2004); MacNeil & Decken (1999); Park (2000); Sisson et al. (2006).graphic file with name e-64-o1909-scheme1.jpg

Experimental

Crystal data

  • C16H14O6·H2O

  • M r = 320.29

  • Monoclinic, Inline graphic

  • a = 13.7590 (17) Å

  • b = 6.7875 (9) Å

  • c = 16.446 (2) Å

  • β = 104.698 (2)°

  • V = 1485.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 150 (2) K

  • 0.17 × 0.13 × 0.08 mm

Data collection

  • Bruker APEX 2000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.981, T max = 0.991

  • 10352 measured reflections

  • 2612 independent reflections

  • 1555 reflections with I > 2σ(I)

  • R int = 0.078

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.088

  • S = 0.85

  • 2612 reflections

  • 216 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680802833X/is2319sup1.cif

e-64-o1909-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802833X/is2319Isup2.hkl

e-64-o1909-Isup2.hkl (128.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O5i 0.84 1.87 2.671 (2) 158
O3—H3⋯O4i 0.84 2.66 3.285 (2) 133
O6—H6⋯O7ii 0.84 1.76 2.584 (3) 165
O7—H7A⋯O2 0.833 (16) 2.30 (2) 2.958 (3) 136 (2)
O7—H7B⋯O1 0.820 (16) 2.50 (2) 3.153 (3) 138 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thanks the Organization for the Prohibition of Chemical Weapons and COMSTECH–ISECO for financial support.

supplementary crystallographic information

Comment

By virtue of their role as pharmacophore, the biphenyl structural motif is found to be an integral part of several important biologically active compounds (Kamoda et al., 2006). The biphenyl system have been extensively studied by X-ray crystallography (Ali, Hussain et al., 2008; Ali, Ibad et al., 2008; Ali, Shah & VanDerveer, 2008; Ibad et al., 2008) and their role have been elaborated in the domain of photophysics (Park, 2000). Our interest in the chemistry of biphenyl compounds stems from their use as starting material for the synthesis of oligo(p-phenylene)s (Sisson et al., 2006; Litvinchuk et al., 2004). The cylindrical self-assembly of suitably substituted oligo(p-phenylene)s result in the formation of functionalized pores (Baudry et al., 2006). We report now the synthesis and crystal structure of 2,2'-[biphenyl-2,2'-diylbis(oxy)]diacetic acid.

The dihedral angle between the planes of the benzene rings is 60.8 (3)°. The inter ring C6—C7 distance is 1.488 (3) Å, which compares well with the reported value (MacNeil & Decken 1999). The molecules of the title compound (Fig. 1) are interacting through intermolecular and intramolecular hydrogen bonding (Table 1) involving carbonyl and hydrogen of the type C═O···HO (Fig. 2). The intermolecular hydrogen bonding is mediated by water molecules (Fig. 2). The two carboxylic acid groups are oriented in the same directions (Fig. 1) due to hydrogen bonding contrary to its hydrazide (Ibad et al., 2008) and ester analogue (Ali, Hussain et al., 2008; Ali, Ibad et al., 2008; Ali, Shah & VanDerveer, 2008) where both carboxylic acids are oriented in different directions. The C14—O2 and C16—O5 distances in the title compound are 1.207 (5) and 1.194 (5) Å, respectively, typical of double bonds (Ibad et al., 2008). The OCH2COOH substituent are having torsion angle 165.3 (4)° (C13—O1—C1—C6) and 178.6 (4)° (C15—O4—C12—C7) with respect to phenyl rings.

Experimental

The title compound 1 was synthesized in two steps. In the first step tert-butyl 2-({2'-[2-(tert-butoxy)-2-oxoethoxy][1,1'-biphenyl]-2- yl}oxy) acetate (compound 2) was prepared and in the second step the tert-butyl group was removed to obtain the title compound 1. The experimental procedure of the both steps is presented below. 1. Synthesis of tert-butyl 2-({2'-[2-(tert-butoxy)-2-oxoethoxy][1,1'-biphenyl] -2- yl}oxy)acetate 2: K2CO3 (414 mg, 3 mmol) and 2,2'-dihydroxybiphenyl (186 mg, 1 mmol) in 15 ml of acetone were stirred for 10 minutes, followed by addition of tertiary butyl bromoacetate (371 mg, 3 mmol). The reaction mixture was stirred at room temperature for three hours. Solvent was evaporated under reduced pressure and the residue was dissolved in a mixture of water (50 ml) and dichloromethane (50 ml). The aqueous layer was extracted three times with dichloromethane.The combined organic phases were evaporated under reduced pressure and the solid residue was dissolved in hot hexane and slow evaporation of hot hexane give us colorless crystals (736 mg) in 80% yield. 2. Synthesis of 2,2'-[biphenyl-2,2'-diylbis(oxy)]diacetic acid 1: 500 mg (1.2 mmol) of was dissolved in 10 ml of dichloromethane and 5 ml of TFA was added to the stirred solution. The reaction was monitor with thin layer chromatography (hexane:choroform 2:8) after each 10 minutes of interval. After 30 minutes the starting material disappeared. All the TFA and solvent were removed through freeze drying and the solid residue was dissolved in methanol, slow evaporation of methanol at room temperature yielded colorless crystals (310 mg, 85%).

Refinement

Water H atoms were located in a difference Fourier map and were refined with distance restraints of O—H = 0.83 (2) and H···H = 1.35 (2) Å. Other H atoms were placed at calculated positions (C—H = 0.95 - 0.99 and O—H = 0.84 Å) and were treated as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Packing diagram, viewed along the c axis.

Crystal data

C16H14O6·H2O F(000) = 672
Mr = 320.29 Dx = 1.432 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 765 reflections
a = 13.7590 (17) Å θ = 2.6–23.3°
b = 6.7875 (9) Å µ = 0.11 mm1
c = 16.446 (2) Å T = 150 K
β = 104.698 (2)° Block, colourless
V = 1485.6 (3) Å3 0.17 × 0.13 × 0.08 mm
Z = 4

Data collection

Bruker APEX 2000 CCD area-detector diffractometer 2612 independent reflections
Radiation source: fine-focus sealed tube 1555 reflections with I > 2σ(I)
graphite Rint = 0.078
φω scans θmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −15→16
Tmin = 0.981, Tmax = 0.991 k = −8→8
10352 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088 H atoms treated by a mixture of independent and constrained refinement
S = 0.85 w = 1/[σ2(Fo2) + (0.0212P)2] where P = (Fo2 + 2Fc2)/3
2612 reflections (Δ/σ)max < 0.001
216 parameters Δρmax = 0.16 e Å3
3 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.66330 (12) 0.7028 (2) 0.14229 (10) 0.0345 (5)
O2 0.77830 (14) 0.9862 (3) 0.10441 (13) 0.0575 (6)
O3 0.64570 (12) 1.1309 (3) 0.01909 (11) 0.0425 (5)
H3 0.6876 1.2187 0.0158 0.064*
O4 0.81532 (12) 0.4297 (2) 0.13157 (10) 0.0358 (5)
O5 0.74938 (13) 0.4148 (3) −0.03373 (11) 0.0401 (5)
O6 0.88580 (13) 0.5688 (3) −0.05041 (11) 0.0537 (6)
H6 0.8564 0.5573 −0.1016 0.080*
C1 0.60904 (18) 0.5402 (4) 0.15417 (15) 0.0291 (6)
C2 0.50827 (18) 0.5152 (4) 0.11531 (15) 0.0324 (7)
H2 0.4738 0.6084 0.0752 0.039*
C3 0.45771 (19) 0.3522 (4) 0.13553 (15) 0.0336 (7)
H3A 0.3883 0.3352 0.1094 0.040*
C4 0.50694 (18) 0.2161 (4) 0.19259 (15) 0.0354 (7)
H4 0.4724 0.1038 0.2053 0.043*
C5 0.60788 (19) 0.2438 (4) 0.23173 (15) 0.0336 (7)
H5 0.6415 0.1509 0.2725 0.040*
C6 0.66082 (18) 0.4036 (4) 0.21279 (15) 0.0281 (6)
C7 0.76791 (18) 0.4314 (3) 0.25873 (15) 0.0294 (6)
C8 0.7942 (2) 0.4382 (4) 0.34570 (17) 0.0396 (7)
H8 0.7430 0.4284 0.3749 0.048*
C9 0.8932 (2) 0.4588 (4) 0.39121 (17) 0.0445 (8)
H9 0.9096 0.4634 0.4509 0.053*
C10 0.9674 (2) 0.4726 (4) 0.34935 (18) 0.0428 (7)
H10 1.0353 0.4878 0.3803 0.051*
C11 0.94422 (19) 0.4646 (4) 0.26314 (17) 0.0383 (7)
H11 0.9962 0.4723 0.2347 0.046*
C12 0.84508 (19) 0.4451 (4) 0.21760 (16) 0.0319 (6)
C13 0.61476 (18) 0.8429 (3) 0.08196 (15) 0.0314 (6)
H13A 0.5600 0.9081 0.1009 0.038*
H13B 0.5852 0.7769 0.0276 0.038*
C14 0.6906 (2) 0.9920 (4) 0.07165 (16) 0.0326 (6)
C15 0.88486 (18) 0.4850 (4) 0.08631 (16) 0.0394 (7)
H15A 0.9416 0.3906 0.0970 0.047*
H15B 0.9119 0.6178 0.1039 0.047*
C16 0.8314 (2) 0.4852 (4) −0.00470 (17) 0.0352 (7)
O7 0.81871 (18) 0.9230 (3) 0.28791 (13) 0.0573 (6)
H7A 0.814 (2) 1.003 (3) 0.2488 (15) 0.086*
H7B 0.795 (2) 0.818 (3) 0.2670 (18) 0.086*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0320 (11) 0.0300 (10) 0.0373 (11) −0.0022 (9) 0.0012 (8) 0.0097 (9)
O2 0.0260 (11) 0.0528 (13) 0.0867 (17) −0.0005 (10) 0.0012 (11) 0.0256 (12)
O3 0.0379 (12) 0.0388 (12) 0.0470 (12) −0.0057 (9) 0.0037 (10) 0.0132 (10)
O4 0.0298 (10) 0.0457 (12) 0.0344 (11) −0.0067 (9) 0.0127 (9) −0.0042 (9)
O5 0.0323 (11) 0.0433 (12) 0.0435 (12) −0.0070 (10) 0.0076 (9) 0.0037 (9)
O6 0.0405 (12) 0.0756 (15) 0.0449 (13) −0.0172 (11) 0.0108 (10) 0.0141 (12)
C1 0.0306 (15) 0.0295 (16) 0.0297 (16) −0.0015 (13) 0.0124 (13) −0.0012 (13)
C2 0.0333 (16) 0.0354 (16) 0.0282 (16) 0.0033 (13) 0.0069 (13) 0.0061 (13)
C3 0.0268 (16) 0.0404 (17) 0.0340 (17) −0.0015 (14) 0.0082 (13) −0.0039 (14)
C4 0.0329 (17) 0.0366 (17) 0.0399 (18) −0.0051 (14) 0.0151 (14) −0.0011 (14)
C5 0.0333 (17) 0.0367 (17) 0.0332 (16) 0.0060 (13) 0.0128 (13) 0.0077 (13)
C6 0.0293 (15) 0.0315 (16) 0.0248 (15) 0.0030 (13) 0.0096 (12) 0.0026 (13)
C7 0.0311 (16) 0.0245 (15) 0.0312 (16) 0.0016 (12) 0.0057 (13) 0.0043 (12)
C8 0.0394 (18) 0.0409 (18) 0.0387 (18) 0.0030 (14) 0.0101 (14) 0.0079 (14)
C9 0.0443 (19) 0.0484 (19) 0.0352 (18) 0.0009 (16) −0.0004 (15) 0.0086 (15)
C10 0.0321 (16) 0.0431 (19) 0.0453 (19) 0.0002 (15) −0.0048 (14) 0.0042 (15)
C11 0.0277 (16) 0.0381 (17) 0.0480 (19) 0.0023 (14) 0.0079 (14) 0.0029 (14)
C12 0.0323 (16) 0.0286 (16) 0.0336 (17) 0.0022 (13) 0.0061 (13) 0.0028 (13)
C13 0.0332 (16) 0.0282 (15) 0.0306 (16) 0.0018 (13) 0.0039 (13) 0.0071 (13)
C14 0.0362 (17) 0.0300 (16) 0.0320 (17) 0.0057 (14) 0.0094 (13) 0.0074 (13)
C15 0.0295 (15) 0.0489 (19) 0.0411 (18) −0.0045 (14) 0.0113 (14) 0.0051 (14)
C16 0.0322 (16) 0.0340 (17) 0.0416 (18) 0.0028 (14) 0.0134 (14) 0.0062 (14)
O7 0.0706 (15) 0.0440 (13) 0.0565 (15) 0.0038 (13) 0.0144 (13) −0.0040 (11)

Geometric parameters (Å, °)

O1—C1 1.374 (3) C6—C7 1.488 (3)
O1—C13 1.414 (3) C7—C8 1.384 (3)
O2—C14 1.191 (3) C7—C12 1.399 (3)
O3—C14 1.322 (3) C8—C9 1.386 (3)
O3—H3 0.8400 C8—H8 0.9500
O4—C12 1.374 (3) C9—C10 1.371 (3)
O4—C15 1.404 (3) C9—H9 0.9500
O5—C16 1.207 (3) C10—C11 1.373 (3)
O6—C16 1.317 (3) C10—H10 0.9500
O6—H6 0.8400 C11—C12 1.386 (3)
C1—C2 1.382 (3) C11—H11 0.9500
C1—C6 1.396 (3) C13—C14 1.494 (3)
C2—C3 1.391 (3) C13—H13A 0.9900
C2—H2 0.9500 C13—H13B 0.9900
C3—C4 1.367 (3) C15—C16 1.491 (3)
C3—H3A 0.9500 C15—H15A 0.9900
C4—C5 1.387 (3) C15—H15B 0.9900
C4—H4 0.9500 O7—H7A 0.833 (16)
C5—C6 1.385 (3) O7—H7B 0.820 (16)
C5—H5 0.9500
C1—O1—C13 117.58 (19) C8—C9—H9 120.3
C14—O3—H3 109.5 C9—C10—C11 120.6 (3)
C12—O4—C15 117.41 (19) C9—C10—H10 119.7
C16—O6—H6 109.5 C11—C10—H10 119.7
O1—C1—C2 123.4 (2) C10—C11—C12 120.0 (3)
O1—C1—C6 115.6 (2) C10—C11—H11 120.0
C2—C1—C6 120.9 (2) C12—C11—H11 120.0
C1—C2—C3 119.4 (2) O4—C12—C11 124.0 (2)
C1—C2—H2 120.3 O4—C12—C7 115.4 (2)
C3—C2—H2 120.3 C11—C12—C7 120.6 (2)
C4—C3—C2 120.7 (2) O1—C13—C14 108.4 (2)
C4—C3—H3A 119.7 O1—C13—H13A 110.0
C2—C3—H3A 119.7 C14—C13—H13A 110.0
C3—C4—C5 119.4 (3) O1—C13—H13B 110.0
C3—C4—H4 120.3 C14—C13—H13B 110.0
C5—C4—H4 120.3 H13A—C13—H13B 108.4
C6—C5—C4 121.5 (2) O2—C14—O3 124.9 (2)
C6—C5—H5 119.2 O2—C14—C13 125.7 (2)
C4—C5—H5 119.2 O3—C14—C13 109.5 (2)
C5—C6—C1 118.0 (2) O4—C15—C16 107.7 (2)
C5—C6—C7 119.7 (2) O4—C15—H15A 110.2
C1—C6—C7 122.2 (2) C16—C15—H15A 110.2
C8—C7—C12 117.8 (2) O4—C15—H15B 110.2
C8—C7—C6 119.6 (2) C16—C15—H15B 110.2
C12—C7—C6 122.6 (2) H15A—C15—H15B 108.5
C7—C8—C9 121.6 (3) O5—C16—O6 123.7 (3)
C7—C8—H8 119.2 O5—C16—C15 124.8 (2)
C9—C8—H8 119.2 O6—C16—C15 111.5 (2)
C10—C9—C8 119.4 (3) H7A—O7—H7B 107 (2)
C10—C9—H9 120.3
C13—O1—C1—C2 −5.2 (3) C6—C7—C8—C9 178.3 (2)
C13—O1—C1—C6 178.4 (2) C7—C8—C9—C10 −0.1 (4)
O1—C1—C2—C3 −175.6 (2) C8—C9—C10—C11 −0.5 (4)
C6—C1—C2—C3 0.5 (4) C9—C10—C11—C12 0.9 (4)
C1—C2—C3—C4 −0.7 (4) C15—O4—C12—C11 −16.4 (3)
C2—C3—C4—C5 1.3 (4) C15—O4—C12—C7 166.3 (2)
C3—C4—C5—C6 −1.7 (4) C10—C11—C12—O4 −177.9 (2)
C4—C5—C6—C1 1.5 (4) C10—C11—C12—C7 −0.7 (4)
C4—C5—C6—C7 177.6 (2) C8—C7—C12—O4 177.5 (2)
O1—C1—C6—C5 175.5 (2) C6—C7—C12—O4 −0.5 (3)
C2—C1—C6—C5 −0.9 (4) C8—C7—C12—C11 0.1 (4)
O1—C1—C6—C7 −0.5 (3) C6—C7—C12—C11 −177.9 (2)
C2—C1—C6—C7 −176.9 (2) C1—O1—C13—C14 −172.89 (19)
C5—C6—C7—C8 −54.7 (3) O1—C13—C14—O2 4.7 (4)
C1—C6—C7—C8 121.3 (3) O1—C13—C14—O3 −176.4 (2)
C5—C6—C7—C12 123.2 (3) C12—O4—C15—C16 −171.5 (2)
C1—C6—C7—C12 −60.8 (3) O4—C15—C16—O5 −12.6 (4)
C12—C7—C8—C9 0.3 (4) O4—C15—C16—O6 168.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3···O5i 0.84 1.87 2.671 (2) 158
O3—H3···O4i 0.84 2.66 3.285 (2) 133
O6—H6···O7ii 0.84 1.76 2.584 (3) 165
O7—H7A···O2 0.83 (2) 2.30 (2) 2.958 (3) 136 (2)
O7—H7B···O1 0.82 (2) 2.50 (2) 3.153 (3) 138 (3)

Symmetry codes: (i) x, y+1, z; (ii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2319).

References

  1. Ali, Q., Hussain, Z., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o1377. [DOI] [PMC free article] [PubMed]
  2. Ali, Q., Ibad, F., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o1408. [DOI] [PMC free article] [PubMed]
  3. Ali, Q., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o910. [DOI] [PMC free article] [PubMed]
  4. Baudry, Y., Litvinchuk, S., Mareda, J., Nishihara, M., Pasnin, D., Shah, M. R., Sakai, N. & Matile, S. (2006). Adv. Funct. Mater.16, 169–179.
  5. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Ibad, F., Mustafa, A., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o1130–o1131. [DOI] [PMC free article] [PubMed]
  7. Kamoda, O., Anzai, K., Mizoguchi, J., Shiojiri, M., Yanagi, T., Nishino, T. & Kamiya, S. (2006). Antimicrob. Agents Chemother.50, 3062–3069. [DOI] [PMC free article] [PubMed]
  8. Litvinchuk, S., Bollot, G., Mareda, J., Som, A., Ronan, D., Shah, M. R., Perrottet, P., Sakai, N. & Matile, S. (2004). J. Am. Chem. Soc.126, 10067–10075. [DOI] [PubMed]
  9. MacNeil, D. D. & Decken, A. (1999). Acta Cryst. C55, 628–630.
  10. Park, S. K. (2000). J. Photochem. Photobiol. A Chem.135, 155–162.
  11. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sisson, A. L., Shah, M. R., Bhosale, S. & Matile, S. (2006). Chem. Soc. Rev.35, 1269–1286. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680802833X/is2319sup1.cif

e-64-o1909-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802833X/is2319Isup2.hkl

e-64-o1909-Isup2.hkl (128.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES