Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 30;64(Pt 10):o2043. doi: 10.1107/S1600536808030912

4-Chloro-N-o-tolyl­benzamide

Aamer Saeed a,*, Rasheed Ahmad Khera a, Naeem Abbas a, Kazuma Gotoh b, Hiroyuki Ishida b
PMCID: PMC2959280  PMID: 21201235

Abstract

In the mol­ecule of the title compound, C14H12ClNO, the two benzene rings are close to coplanar [dihedral angle = 7.85 (4)°]. The amide N—C=O plane makes dihedral angles of 34.04 (4) and 39.90 (3)°, respectively, with the 4-chloro- and 2-methyl­phenyl rings. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains.

Related literature

For a related structure, see: Saeed et al. (2008). For bond-length data, see: Allen et al. (1987).graphic file with name e-64-o2043-scheme1.jpg

Experimental

Crystal data

  • C14H12ClNO

  • M r = 245.71

  • Monoclinic, Inline graphic

  • a = 10.7906 (14) Å

  • b = 4.8793 (6) Å

  • c = 23.522 (3) Å

  • β = 98.125 (3)°

  • V = 1226.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 223 (1) K

  • 0.40 × 0.18 × 0.09 mm

Data collection

  • Rigaku R-AXIS RAPID II diffractometer

  • Absorption correction: numerical (ABSCOR; Higashi, 1999) T min = 0.928, T max = 0.974

  • 14142 measured reflections

  • 3461 independent reflections

  • 1685 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.166

  • S = 1.06

  • 3461 reflections

  • 159 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: CrystalStructure and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808030912/hk2536sup1.cif

e-64-o2043-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030912/hk2536Isup2.hkl

e-64-o2043-Isup2.hkl (169.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 (2) 2.07 (2) 2.9073 (18) 164.1 (17)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

The background to this study has been described in our earlier paper of 4-chloro-N-(2-chlorophenyl)-benzamide (Saeed et al., 2008).

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1–C6) and B (C8–C13) are, of course, planar and the dihedral angle between them is 7.85 (4)°. So, they are also nearly coplanar. The amide plane (N1/O1/C7) is oriented with respect to rings A and B at dihedral angles of 34.04 (4)° and 39.90 (3)°, respectively.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, 4-chorobenzoyl chloride (5.4 mmol) in CHCl3 was treated with 2-methylaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 4 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aq. 1 M HCl and saturated aq. NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in CHCl3 afforded the title compound (yield; 84%). Anal. calcd. for C14H12ClNO: C 58.67, H 4.92, N 5.70%; found: C 58.61, H 4.96, N 5.79%.

Refinement

The methyl H atoms were disordered. During the refinement process the disordered atoms were refined with occupancies of 0.80 (2) and 0.20 (2). H1 atom (for NH) was located in difference synthesis and refined isotropically [N—H = 0.86 (2) Å and Uiso(H) = 0.067 (6) Å2]. The remaining H atoms were positioned geometrically, with C—H = 0.94 and 0.97 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme.

Fig. 2.

Fig. 2.

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H12ClNO F(000) = 512.00
Mr = 245.71 Dx = 1.331 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2yn Cell parameters from 7779 reflections
a = 10.7906 (14) Å θ = 3.0–30.0°
b = 4.8793 (6) Å µ = 0.29 mm1
c = 23.522 (3) Å T = 223 K
β = 98.125 (3)° Block, colorless
V = 1226.0 (3) Å3 0.40 × 0.18 × 0.09 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID II diffractometer 1685 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1 Rint = 0.046
ω scans θmax = 30.0°, θmin = 3.0°
Absorption correction: numerical (ABSCOR; Higashi, 1999) h = −15→15
Tmin = 0.928, Tmax = 0.974 k = −6→6
14142 measured reflections l = −33→33
3461 independent reflections

Refinement

Refinement on F2 H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0782P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.166 (Δ/σ)max < 0.001
S = 1.06 Δρmax = 0.22 e Å3
3461 reflections Δρmin = −0.28 e Å3
159 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.40808 (7) 0.32489 (17) 0.27042 (3) 0.1042 (3)
O1 0.31241 (13) 0.9179 (2) 0.51539 (6) 0.0709 (4)
N1 0.25683 (14) 0.4881 (3) 0.53727 (6) 0.0523 (4)
H1 0.2591 (18) 0.319 (4) 0.5268 (8) 0.067 (6)*
C1 0.32795 (16) 0.5743 (3) 0.44582 (8) 0.0509 (4)
C2 0.42185 (17) 0.7014 (4) 0.42126 (10) 0.0653 (5)
H2 0.4689 0.8416 0.4414 0.078*
C3 0.4477 (2) 0.6259 (4) 0.36758 (10) 0.0750 (6)
H3 0.5129 0.7107 0.3515 0.090*
C4 0.3762 (2) 0.4243 (4) 0.33802 (9) 0.0676 (5)
C5 0.2816 (2) 0.2953 (4) 0.36098 (9) 0.0686 (5)
H5 0.2336 0.1583 0.3402 0.082*
C6 0.25799 (18) 0.3701 (4) 0.41517 (8) 0.0600 (5)
H6 0.1940 0.2817 0.4314 0.072*
C7 0.29972 (15) 0.6742 (3) 0.50259 (8) 0.0496 (4)
C8 0.21114 (17) 0.5490 (3) 0.58983 (7) 0.0520 (4)
C9 0.10277 (18) 0.4181 (4) 0.60191 (8) 0.0579 (5)
C10 0.0587 (2) 0.4874 (5) 0.65275 (9) 0.0779 (6)
H10 −0.0138 0.4006 0.6618 0.093*
C11 0.1170 (3) 0.6773 (6) 0.68999 (10) 0.0923 (8)
H11 0.0837 0.7228 0.7236 0.111*
C12 0.2238 (3) 0.8005 (5) 0.67811 (10) 0.0905 (8)
H12 0.2645 0.9300 0.7038 0.109*
C13 0.2728 (2) 0.7363 (4) 0.62834 (9) 0.0700 (6)
H13 0.3473 0.8191 0.6207 0.084*
C14 0.03458 (18) 0.2127 (4) 0.56166 (10) 0.0674 (5)
H14A 0.0089 0.2980 0.5246 0.101* 0.80 (2)
H14B −0.0387 0.1481 0.5772 0.101* 0.80 (2)
H14C 0.0894 0.0592 0.5571 0.101* 0.80 (2)
H14D 0.0782 0.1894 0.5287 0.101* 0.20 (2)
H14E −0.0498 0.2772 0.5490 0.101* 0.20 (2)
H14F 0.0312 0.0386 0.5813 0.101* 0.20 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1230 (6) 0.1310 (7) 0.0666 (4) 0.0156 (4) 0.0405 (4) −0.0055 (3)
O1 0.0955 (10) 0.0364 (6) 0.0858 (10) −0.0028 (6) 0.0300 (8) −0.0084 (6)
N1 0.0646 (9) 0.0387 (7) 0.0550 (9) 0.0004 (7) 0.0135 (7) −0.0055 (6)
C1 0.0528 (9) 0.0422 (8) 0.0589 (10) 0.0044 (7) 0.0127 (8) 0.0008 (7)
C2 0.0615 (11) 0.0564 (11) 0.0825 (14) −0.0036 (9) 0.0262 (10) −0.0072 (10)
C3 0.0733 (13) 0.0705 (13) 0.0893 (16) 0.0016 (11) 0.0393 (12) 0.0029 (12)
C4 0.0751 (12) 0.0740 (13) 0.0573 (11) 0.0188 (11) 0.0219 (10) 0.0049 (10)
C5 0.0737 (12) 0.0730 (13) 0.0589 (12) −0.0012 (11) 0.0084 (10) −0.0065 (10)
C6 0.0647 (11) 0.0613 (11) 0.0558 (11) −0.0047 (9) 0.0148 (8) −0.0007 (8)
C7 0.0511 (9) 0.0370 (8) 0.0618 (11) 0.0035 (7) 0.0114 (8) −0.0008 (7)
C8 0.0647 (10) 0.0437 (9) 0.0469 (9) 0.0117 (8) 0.0061 (8) −0.0010 (7)
C9 0.0674 (11) 0.0560 (10) 0.0516 (10) 0.0160 (9) 0.0131 (8) 0.0093 (8)
C10 0.0907 (15) 0.0869 (15) 0.0601 (13) 0.0279 (12) 0.0244 (11) 0.0179 (11)
C11 0.130 (2) 0.1023 (19) 0.0465 (12) 0.0468 (17) 0.0173 (14) −0.0015 (12)
C12 0.127 (2) 0.0812 (15) 0.0567 (13) 0.0293 (16) −0.0111 (14) −0.0197 (11)
C13 0.0832 (14) 0.0610 (11) 0.0621 (13) 0.0098 (11) −0.0027 (10) −0.0134 (9)
C14 0.0638 (11) 0.0617 (11) 0.0782 (14) −0.0026 (9) 0.0154 (10) 0.0057 (10)

Geometric parameters (Å, °)

Cl1—C4 1.742 (2) C8—C9 1.396 (3)
O1—C7 1.2299 (19) C9—C10 1.390 (3)
N1—C7 1.346 (2) C9—C14 1.498 (3)
N1—C8 1.426 (2) C10—C11 1.366 (3)
N1—H1 0.86 (2) C10—H10 0.9400
C1—C2 1.382 (3) C11—C12 1.363 (4)
C1—C6 1.389 (2) C11—H11 0.9400
C1—C7 1.493 (2) C12—C13 1.387 (3)
C2—C3 1.381 (3) C12—H12 0.9400
C2—H2 0.9400 C13—H13 0.9400
C3—C4 1.376 (3) C14—H14A 0.9700
C3—H3 0.9400 C14—H14B 0.9700
C4—C5 1.374 (3) C14—H14C 0.9700
C5—C6 1.384 (3) C14—H14D 0.9699
C5—H5 0.9400 C14—H14E 0.9700
C6—H6 0.9400 C14—H14F 0.9701
C8—C13 1.388 (3)
C7—N1—C8 125.15 (15) C9—C10—H10 118.8
C7—N1—H1 116.5 (14) C12—C11—C10 119.6 (2)
C8—N1—H1 118.3 (14) C12—C11—H11 120.2
C2—C1—C6 118.81 (18) C10—C11—H11 120.2
C2—C1—C7 118.80 (16) C11—C12—C13 120.5 (2)
C6—C1—C7 122.26 (16) C11—C12—H12 119.7
C3—C2—C1 121.15 (19) C13—C12—H12 119.7
C3—C2—H2 119.4 C12—C13—C8 119.7 (2)
C1—C2—H2 119.4 C12—C13—H13 120.2
C4—C3—C2 118.77 (19) C8—C13—H13 120.2
C4—C3—H3 120.6 C9—C14—H14A 109.5
C2—C3—H3 120.6 C9—C14—H14B 109.5
C5—C4—C3 121.57 (19) H14A—C14—H14B 109.5
C5—C4—Cl1 118.99 (17) C9—C14—H14C 109.5
C3—C4—Cl1 119.43 (17) H14A—C14—H14C 109.5
C4—C5—C6 119.0 (2) H14B—C14—H14C 109.5
C4—C5—H5 120.5 C9—C14—H14D 109.5
C6—C5—H5 120.5 H14A—C14—H14D 56.0
C5—C6—C1 120.66 (19) H14B—C14—H14D 141.0
C5—C6—H6 119.7 H14C—C14—H14D 56.5
C1—C6—H6 119.7 C9—C14—H14E 109.5
O1—C7—N1 122.69 (17) H14A—C14—H14E 56.5
O1—C7—C1 120.33 (15) H14B—C14—H14E 56.0
N1—C7—C1 116.95 (14) H14C—C14—H14E 141.1
C13—C8—C9 120.40 (18) H14D—C14—H14E 109.5
C13—C8—N1 120.71 (18) C9—C14—H14F 109.5
C9—C8—N1 118.89 (15) H14A—C14—H14F 141.1
C10—C9—C8 117.52 (19) H14B—C14—H14F 56.5
C10—C9—C14 120.6 (2) H14C—C14—H14F 56.0
C8—C9—C14 121.86 (17) H14D—C14—H14F 109.5
C11—C10—C9 122.3 (2) H14E—C14—H14F 109.5
C11—C10—H10 118.8
C6—C1—C2—C3 −0.9 (3) C6—C1—C7—N1 34.7 (2)
C7—C1—C2—C3 −176.85 (16) C7—N1—C8—C13 −42.7 (2)
C1—C2—C3—C4 1.4 (3) C7—N1—C8—C9 136.99 (18)
C2—C3—C4—C5 −0.8 (3) C13—C8—C9—C10 1.4 (3)
C2—C3—C4—Cl1 −179.63 (15) N1—C8—C9—C10 −178.29 (15)
C3—C4—C5—C6 −0.1 (3) C13—C8—C9—C14 −179.35 (17)
Cl1—C4—C5—C6 178.64 (14) N1—C8—C9—C14 1.0 (2)
C4—C5—C6—C1 0.6 (3) C8—C9—C10—C11 0.5 (3)
C2—C1—C6—C5 −0.1 (3) C14—C9—C10—C11 −178.77 (18)
C7—C1—C6—C5 175.69 (16) C9—C10—C11—C12 −1.5 (3)
C8—N1—C7—O1 5.6 (3) C10—C11—C12—C13 0.6 (4)
C8—N1—C7—C1 −172.29 (15) C11—C12—C13—C8 1.3 (3)
C2—C1—C7—O1 32.5 (2) C9—C8—C13—C12 −2.3 (3)
C6—C1—C7—O1 −143.28 (18) N1—C8—C13—C12 177.40 (16)
C2—C1—C7—N1 −149.49 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 (2) 2.07 (2) 2.9073 (18) 164.1 (17)

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2536).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Higashi, T. (1999). ABSCOR Rigaku Corporation, Tokyo, Japan.
  4. Rigaku/MSC (2004). CrystalStructure and PROCESS-AUTO Rigaku/MSC, The Woodlands, Texas, USA.
  5. Saeed, A., Khera, R. A., Gotoh, K. & Ishida, H. (2008). Acta Cryst. E64, o1934. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808030912/hk2536sup1.cif

e-64-o2043-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030912/hk2536Isup2.hkl

e-64-o2043-Isup2.hkl (169.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES