Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 6;64(Pt 10):o1895–o1896. doi: 10.1107/S160053680802816X

N,N′-Bis(5-bromo-2-hydroxy­benzyl­idene)-2,2-dimethylpropane-1,3-diamine

Hoong-Kun Fun a,*, Reza Kia a, Hadi Kargar b,
PMCID: PMC2959295  PMID: 21201107

Abstract

The crystal structure of the title Schiff base compound, C19H20Br2N2O2, contains two crystallographically independent mol­ecules (A and B) in the asymmetric unit, with similar conformations. Intra­molecular O—H⋯N (× 4) and C—H⋯N (× 5) hydrogen bonds form six- and five-membered rings, producing S(6) and S(5) ring motifs, respectively. One of the N atoms in mol­ecule A acts as a trifurcated acceptor, the rest of the N atoms being bifurcated acceptors. The dihedral angles between the benzene rings in mol­ecules A and B are 47.83 (17) and 61.11 (17)°, respectively. The mol­ecular conformation is stabilized by intra­molecular O—H⋯N and C—H⋯N hydrogen bonds. The short distances between the centroids of the benzene rings [3.7799 (19)–3.890 (2) Å] indicate the existence of π–π inter­actions. In addition, the crystal structure is further stabilized by an inter­molecular C—H⋯O hydrogen bond, C—H⋯π inter­actions, and short inter­molecular Br⋯Br and Br⋯O contacts [3.4786 (5) and 3.149 (3) Å, respectively].

Related literature

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For information on Schiff base ligands and complexes and their applications, see, for example: Fun, Kargar & Kia (2008); Fun, Kia & Kargar (2008); Fun, Mirkhani et al. (2008a ,b ); Calligaris & Randaccio (1987); Casellato & Vigato (1977); Pal et al. (2005); Reglinski et al. 2004; Hou et al. (2001); Ren et al. (2002).graphic file with name e-64-o1895-scheme1.jpg

Experimental

Crystal data

  • C19H20Br2N2O2

  • M r = 468.19

  • Monoclinic, Inline graphic

  • a = 31.7684 (10) Å

  • b = 6.2436 (2) Å

  • c = 38.7287 (11) Å

  • β = 99.870 (2)°

  • V = 7568.1 (4) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 4.30 mm−1

  • T = 100.0 (1) K

  • 0.52 × 0.10 × 0.06 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.213, T max = 0.782

  • 47391 measured reflections

  • 11172 independent reflections

  • 6920 reflections with I > 2σ(I)

  • R int = 0.080

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.110

  • S = 1.01

  • 11172 reflections

  • 463 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680802816X/at2626sup1.cif

e-64-o1895-sup1.cif (30.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802816X/at2626Isup2.hkl

e-64-o1895-Isup2.hkl (546.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1B—H1OB⋯N1B 0.85 1.81 2.580 (4) 151
O2A—H2OA⋯N2A 0.85 (4) 1.79 (4) 2.578 (4) 154 (4)
O1A—H1OA⋯N1A 0.79 (5) 1.85 (5) 2.572 (4) 153 (4)
O2B—H2OB⋯N2B 0.73 (5) 1.94 (5) 2.586 (4) 149 (5)
C8A—H8AA⋯N2A 0.99 2.58 2.960 (4) 103
C8B—H8BA⋯N2B 0.99 2.60 2.966 (4) 102
C16B—H16B⋯O2Bi 0.95 2.58 3.290 (5) 131
C19A—H19B⋯N1A 0.98 2.58 2.918 (4) 100
C19A—H19C⋯N2A 0.98 2.58 2.933 (5) 101
C19B—H19F⋯N1B 0.98 2.60 2.926 (5) 100
C7B—H7BACg1ii 0.95 2.96 3.571 (4) 123
C18B—H18DCg2iii 0.98 2.77 3.652 (4) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg1 and Cg2 are the centroids of the C1A–C6A and C12A–C17A benzene rings, respectively.

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund (grant No. 305/PFIZIK/613312). RK thanks Universiti Sains Malaysia for an award of a post-doctoral research fellowship. HK thanks PNU for financial support.

supplementary crystallographic information

Comment

The condensation of primary amines with carbonyl compounds yields Schiff base (Casellato & Vigato, 1977) that are still now regarded as one of the most potential group of chelators for facile preparations of metallo-organic hybrid materials. In the past two decades, the synthesis, structure and properties of Schiff base complexes have stimulated much interest for their noteworthy contributions in single molecule-based magnetism, materials science, catalysis of many reactions like carbonylation, hydroformylation, reduction, oxidation, epoxidation and hydrolysis, etc. (Pal et al., 2005; Reglinski et al., 2004; Hou et al., 2001; Ren et al., 2002). Only a relatively small number of free Schiff base ligands have been characterized by X-ray crystallography (Calligaris & Randaccio, 1987). As an extension of our work (Fun, Kargar & Kia, 2008; Fun, Kia & Kargar, 2008; Fun, Mirkhani et al., 2008a,b) on the structural characterization of Schiff base compounds, the title compound (I), is reported here.

The crystal structure of the title compound (I) (Fig. I), contains two crystallographically independent molecules (A and B) in the asymmetric unit, with similar conformations. The bond lengths and angles are within normal ranges (Allen et al., 1987). Intramolecular O—H···N (x 4) and C—H···N (x 5) hydrogen bonds form six- and five-membered rings, producing S(6) and S(5) ring motifs, respectively (Bernstein et al. 1995) (Table 1). One of the nitrogen atoms in the molecule A acts as a trifurcated acceptor, but the rest of the nitrogen atoms are bifurcated acceptors. The dihedral angles between the benzene rings in molecule A and B is 47.83 (17)° and 61.11 (17)°. The molecular conformation is stabilized by intramolecular O—H···N and C—H···N hydrogen bonds. The short distances between the centroids of the benzene rings [Cg2–Cg2 = 3.7799 (19) Å and Cg3–Cg3 = 3.890 (2) Å] indicate the existence of π–π interactions. The Cg2 and Cg3 are the centroids of the C12A–C17A and C12B–C17B benzene rings. The interesting features of the crystal structure are short intermolecular Br···Br [symmetry code: 1/2 + x, -1/2 - y + 1/2 + z] and Br···O [symmetry code: -x, 1 + y, 1/2 - z] interactions, with distances of 3.4786 (5) and 3.149 (3) Å, respectively, which are significantly shorter than the sum of the van der Waals radii of the relevent atoms.

In addition, the crystal structure is further stabilized by intermolecular C—H···O hydrogen bond and C—H···π interactions.

Experimental

The synthetic method has been described earlier (Reglinski et al., 2004). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement

H atoms bound to the O1A, O2A, and O2B were located in a difference Fourier map and refined freely. H atom bound to O1B was located from a difference Fourier map and constrained to refine with the parent atom after distance restraint of 0.84 (1) Å. The rest of the H atoms were positioned geometrically (C—H = 0.95–0.99 Å) and refined using a riding model.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with atom labels and 50% probability ellipsoids for non-H atoms. Intramolecular interactions are shown as dashed lines.

Fig. 2.

Fig. 2.

The crystal packing of (I), showing stacking of molecules down the b-axis. Intramolecular and intermolecular interactions are shown as dashed lines.

Crystal data

C19H20Br2N2O2 F(000) = 3744
Mr = 468.19 Dx = 1.644 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 5640 reflections
a = 31.7684 (10) Å θ = 3.0–27.0°
b = 6.2436 (2) Å µ = 4.30 mm1
c = 38.7287 (11) Å T = 100 K
β = 99.870 (2)° Needle, yellow
V = 7568.1 (4) Å3 0.52 × 0.10 × 0.06 mm
Z = 16

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 11172 independent reflections
Radiation source: fine-focus sealed tube 6920 reflections with I > 2σ(I)
graphite Rint = 0.080
φ and ω scans θmax = 30.2°, θmin = 1.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −36→44
Tmin = 0.213, Tmax = 0.783 k = −8→8
47391 measured reflections l = −54→54

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0443P)2 + 4.1476P] where P = (Fo2 + 2Fc2)/3
11172 reflections (Δ/σ)max = 0.001
463 parameters Δρmax = 0.57 e Å3
0 restraints Δρmin = −0.46 e Å3

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1A 0.048763 (12) 0.47249 (7) 0.124135 (9) 0.02437 (10)
Br2A 0.330044 (11) 0.00679 (6) 0.479516 (9) 0.02179 (9)
O1A 0.06595 (9) 0.8408 (5) 0.26946 (7) 0.0269 (6)
O2A 0.18364 (8) 0.6081 (4) 0.43058 (7) 0.0214 (6)
N1A 0.09915 (9) 0.4834 (5) 0.29342 (7) 0.0207 (7)
N2A 0.14171 (9) 0.2889 (5) 0.39950 (7) 0.0185 (6)
C1A 0.06195 (11) 0.7509 (6) 0.23744 (9) 0.0197 (8)
C2A 0.04274 (11) 0.8701 (6) 0.20872 (10) 0.0231 (8)
H2AA 0.0321 1.0093 0.2121 0.028*
C3A 0.03900 (11) 0.7879 (6) 0.17532 (9) 0.0206 (8)
H3AA 0.0261 0.8709 0.1558 0.025*
C4A 0.05410 (11) 0.5838 (6) 0.17031 (9) 0.0202 (8)
C5A 0.07244 (11) 0.4615 (6) 0.19833 (9) 0.0191 (8)
H5AA 0.0825 0.3215 0.1946 0.023*
C6A 0.07639 (11) 0.5435 (6) 0.23258 (9) 0.0182 (8)
C7A 0.09411 (11) 0.4094 (6) 0.26223 (9) 0.0197 (8)
H7AA 0.1020 0.2657 0.2584 0.024*
C8A 0.11469 (11) 0.3431 (6) 0.32298 (9) 0.0200 (8)
H8AA 0.1426 0.3959 0.3353 0.024*
H8AB 0.1189 0.1969 0.3143 0.024*
C9A 0.08291 (11) 0.3352 (6) 0.34871 (9) 0.0178 (7)
C10A 0.10260 (11) 0.1953 (6) 0.37987 (9) 0.0191 (8)
H10A 0.0816 0.1765 0.3958 0.023*
H10B 0.1091 0.0520 0.3712 0.023*
C11A 0.17384 (11) 0.1677 (6) 0.40944 (8) 0.0182 (8)
H11A 0.1724 0.0207 0.4030 0.022*
C12A 0.21289 (11) 0.2529 (6) 0.43068 (8) 0.0168 (7)
C13A 0.24770 (11) 0.1167 (6) 0.44173 (8) 0.0174 (7)
H13A 0.2467 −0.0279 0.4340 0.021*
C14A 0.28333 (10) 0.1924 (6) 0.46376 (9) 0.0166 (7)
C15A 0.28534 (11) 0.4037 (6) 0.47528 (8) 0.0187 (8)
H15A 0.3097 0.4540 0.4909 0.022*
C16A 0.25179 (11) 0.5388 (6) 0.46392 (9) 0.0191 (8)
H16A 0.2534 0.6836 0.4715 0.023*
C17A 0.21539 (11) 0.4681 (6) 0.44144 (9) 0.0170 (7)
C18A 0.04145 (11) 0.2283 (7) 0.33119 (10) 0.0235 (8)
H18A 0.0211 0.2254 0.3476 0.035*
H18B 0.0475 0.0814 0.3245 0.035*
H18C 0.0291 0.3094 0.3102 0.035*
C19A 0.07370 (12) 0.5588 (6) 0.36131 (9) 0.0222 (8)
H19A 0.0532 0.5491 0.3775 0.033*
H19B 0.0617 0.6476 0.3412 0.033*
H19C 0.1003 0.6235 0.3734 0.033*
Br1B 0.203156 (14) −0.21813 (7) 0.339930 (10) 0.03229 (11)
Br2B −0.107371 (12) −0.17661 (7) 0.040046 (10) 0.02582 (10)
O1B 0.18949 (9) 0.3706 (4) 0.21548 (7) 0.0311 (7)
H1OB 0.1733 0.3089 0.1988 0.047*
O2B 0.04871 (9) 0.3734 (5) 0.04206 (7) 0.0234 (6)
N1B 0.15040 (9) 0.0685 (5) 0.17729 (7) 0.0210 (7)
N2B 0.09435 (9) 0.0503 (5) 0.06810 (7) 0.0203 (7)
C1B 0.19306 (11) 0.2322 (6) 0.24240 (10) 0.0230 (8)
C2B 0.21359 (12) 0.2995 (7) 0.27530 (10) 0.0274 (9)
H2BA 0.2255 0.4392 0.2781 0.033*
C3B 0.21669 (12) 0.1653 (7) 0.30373 (10) 0.0260 (9)
H3BA 0.2306 0.2126 0.3261 0.031*
C4B 0.19961 (12) −0.0384 (7) 0.29977 (9) 0.0241 (9)
C5B 0.17993 (11) −0.1126 (6) 0.26741 (9) 0.0205 (8)
H5BA 0.1687 −0.2539 0.2650 0.025*
C6B 0.17662 (11) 0.0223 (6) 0.23812 (9) 0.0195 (8)
C7B 0.15596 (11) −0.0552 (6) 0.20381 (9) 0.0185 (8)
H7BA 0.1466 −0.1997 0.2012 0.022*
C8B 0.13053 (11) −0.0151 (6) 0.14318 (9) 0.0220 (8)
H8BA 0.1022 0.0522 0.1360 0.026*
H8BB 0.1263 −0.1716 0.1449 0.026*
C9B 0.15859 (11) 0.0308 (6) 0.11529 (9) 0.0202 (8)
C10B 0.13537 (11) −0.0555 (7) 0.08002 (9) 0.0218 (8)
H10C 0.1539 −0.0355 0.0621 0.026*
H10D 0.1305 −0.2111 0.0822 0.026*
C11B 0.06085 (11) −0.0637 (6) 0.06348 (9) 0.0193 (8)
H11B 0.0632 −0.2135 0.0676 0.023*
C12B 0.01870 (11) 0.0298 (6) 0.05198 (8) 0.0175 (7)
C13B −0.01786 (11) −0.0943 (6) 0.05134 (9) 0.0203 (8)
H13B −0.0154 −0.2390 0.0590 0.024*
C14B −0.05760 (11) −0.0080 (6) 0.03961 (9) 0.0188 (8)
C15B −0.06189 (11) 0.2017 (6) 0.02785 (9) 0.0213 (8)
H15B −0.0894 0.2590 0.0193 0.026*
C16B −0.02609 (11) 0.3268 (6) 0.02854 (9) 0.0212 (8)
H16B −0.0290 0.4705 0.0204 0.025*
C17B 0.01438 (11) 0.2447 (6) 0.04102 (9) 0.0192 (8)
C18B 0.20099 (11) −0.0906 (7) 0.12457 (10) 0.0249 (9)
H18D 0.2190 −0.0598 0.1070 0.037*
H18E 0.1953 −0.2448 0.1250 0.037*
H18F 0.2158 −0.0447 0.1477 0.037*
C19B 0.16738 (12) 0.2702 (6) 0.11289 (10) 0.0239 (8)
H19D 0.1402 0.3474 0.1069 0.036*
H19E 0.1849 0.2955 0.0948 0.036*
H19F 0.1827 0.3215 0.1355 0.036*
H2OA 0.1637 (13) 0.531 (7) 0.4195 (10) 0.027 (12)*
H1OA 0.0731 (13) 0.745 (8) 0.2823 (11) 0.031 (14)*
H2OB 0.0676 (14) 0.317 (8) 0.0506 (12) 0.043 (16)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1A 0.02596 (19) 0.0293 (2) 0.01827 (17) 0.00233 (18) 0.00511 (14) 0.00038 (16)
Br2A 0.01765 (17) 0.0224 (2) 0.02391 (17) 0.00251 (16) −0.00050 (13) 0.00215 (16)
O1A 0.0358 (16) 0.0207 (16) 0.0234 (14) 0.0043 (14) 0.0028 (12) −0.0006 (13)
O2A 0.0205 (13) 0.0148 (14) 0.0271 (13) 0.0027 (12) −0.0014 (11) −0.0022 (12)
N1A 0.0187 (15) 0.0206 (17) 0.0223 (14) 0.0010 (14) 0.0022 (12) 0.0022 (14)
N2A 0.0204 (15) 0.0166 (17) 0.0176 (14) 0.0015 (14) 0.0008 (12) 0.0022 (13)
C1A 0.0174 (17) 0.019 (2) 0.0241 (18) −0.0018 (16) 0.0064 (14) −0.0020 (16)
C2A 0.0231 (19) 0.017 (2) 0.030 (2) 0.0026 (17) 0.0064 (16) 0.0017 (17)
C3A 0.0163 (17) 0.021 (2) 0.0241 (18) 0.0019 (16) 0.0028 (14) 0.0081 (16)
C4A 0.0179 (17) 0.026 (2) 0.0179 (16) −0.0035 (17) 0.0051 (14) −0.0008 (16)
C5A 0.0158 (16) 0.017 (2) 0.0247 (18) 0.0005 (15) 0.0050 (14) −0.0001 (16)
C6A 0.0155 (17) 0.0166 (19) 0.0224 (17) −0.0002 (15) 0.0033 (13) 0.0023 (15)
C7A 0.0177 (18) 0.019 (2) 0.0235 (18) 0.0010 (16) 0.0055 (14) −0.0019 (16)
C8A 0.0171 (17) 0.022 (2) 0.0195 (17) −0.0012 (16) 0.0009 (14) −0.0003 (16)
C9A 0.0184 (17) 0.0150 (19) 0.0192 (16) 0.0017 (16) 0.0008 (13) 0.0016 (15)
C10A 0.0166 (17) 0.018 (2) 0.0226 (17) −0.0039 (16) 0.0030 (14) −0.0010 (16)
C11A 0.0228 (18) 0.0174 (19) 0.0153 (16) −0.0026 (16) 0.0057 (14) 0.0023 (15)
C12A 0.0161 (17) 0.0189 (19) 0.0156 (15) −0.0010 (15) 0.0038 (13) 0.0017 (15)
C13A 0.0210 (18) 0.0150 (18) 0.0168 (16) 0.0014 (16) 0.0046 (13) 0.0014 (15)
C14A 0.0156 (16) 0.0180 (19) 0.0165 (15) 0.0023 (15) 0.0035 (13) 0.0048 (15)
C15A 0.0163 (17) 0.024 (2) 0.0154 (16) −0.0002 (16) 0.0011 (13) 0.0013 (15)
C16A 0.0221 (18) 0.0167 (19) 0.0189 (16) −0.0033 (16) 0.0044 (14) −0.0019 (15)
C17A 0.0180 (17) 0.0147 (19) 0.0189 (16) 0.0001 (15) 0.0053 (13) −0.0003 (15)
C18A 0.0173 (18) 0.024 (2) 0.0273 (19) −0.0035 (17) −0.0007 (15) −0.0016 (17)
C19A 0.0231 (19) 0.020 (2) 0.0219 (17) 0.0019 (17) −0.0021 (14) −0.0003 (16)
Br1B 0.0397 (2) 0.0322 (3) 0.02182 (19) 0.0007 (2) −0.00362 (16) −0.00159 (18)
Br2B 0.01964 (18) 0.0264 (2) 0.0304 (2) −0.00490 (17) 0.00142 (15) −0.00229 (17)
O1B 0.0361 (16) 0.0214 (15) 0.0344 (15) −0.0074 (13) 0.0022 (13) 0.0013 (13)
O2B 0.0202 (14) 0.0190 (16) 0.0299 (14) −0.0024 (13) 0.0015 (12) 0.0058 (12)
N1B 0.0205 (16) 0.0222 (18) 0.0203 (15) 0.0028 (14) 0.0035 (12) 0.0007 (14)
N2B 0.0181 (15) 0.0252 (18) 0.0178 (14) 0.0016 (14) 0.0035 (11) 0.0028 (13)
C1B 0.0184 (18) 0.021 (2) 0.0294 (19) −0.0007 (17) 0.0048 (15) −0.0011 (17)
C2B 0.022 (2) 0.020 (2) 0.038 (2) −0.0057 (18) 0.0029 (17) −0.0074 (19)
C3B 0.0218 (19) 0.025 (2) 0.029 (2) −0.0002 (18) −0.0016 (15) −0.0111 (18)
C4B 0.0221 (19) 0.027 (2) 0.0227 (17) 0.0073 (17) 0.0024 (15) −0.0021 (17)
C5B 0.0186 (18) 0.0170 (19) 0.0257 (18) 0.0010 (16) 0.0036 (14) −0.0027 (16)
C6B 0.0169 (17) 0.019 (2) 0.0221 (17) 0.0030 (16) 0.0030 (13) −0.0014 (16)
C7B 0.0150 (17) 0.0178 (19) 0.0234 (17) −0.0018 (15) 0.0052 (14) −0.0034 (16)
C8B 0.0181 (17) 0.023 (2) 0.0243 (17) −0.0025 (17) 0.0023 (14) 0.0014 (17)
C9B 0.0155 (17) 0.022 (2) 0.0234 (17) 0.0019 (16) 0.0030 (14) 0.0031 (16)
C10B 0.0210 (18) 0.024 (2) 0.0204 (17) 0.0026 (17) 0.0037 (14) 0.0003 (16)
C11B 0.0200 (18) 0.019 (2) 0.0194 (17) 0.0048 (16) 0.0037 (14) 0.0011 (15)
C12B 0.0171 (17) 0.020 (2) 0.0149 (15) 0.0001 (16) 0.0004 (13) −0.0013 (15)
C13B 0.0222 (19) 0.018 (2) 0.0203 (17) 0.0013 (16) 0.0020 (14) 0.0023 (16)
C14B 0.0170 (17) 0.020 (2) 0.0187 (16) −0.0024 (16) 0.0025 (13) −0.0053 (16)
C15B 0.0184 (18) 0.024 (2) 0.0207 (17) 0.0037 (17) −0.0004 (14) 0.0014 (16)
C16B 0.026 (2) 0.017 (2) 0.0205 (17) 0.0018 (17) 0.0038 (15) 0.0012 (16)
C17B 0.0231 (19) 0.019 (2) 0.0162 (16) −0.0003 (16) 0.0048 (14) −0.0010 (15)
C18B 0.0200 (19) 0.028 (2) 0.0261 (19) 0.0019 (18) 0.0016 (15) −0.0024 (18)
C19B 0.0210 (19) 0.024 (2) 0.0267 (19) −0.0024 (17) 0.0050 (15) 0.0042 (17)

Geometric parameters (Å, °)

Br1A—C4A 1.899 (3) Br1B—C4B 1.906 (4)
Br2A—C14A 1.899 (3) Br2B—C14B 1.902 (4)
O1A—C1A 1.347 (4) O1B—C1B 1.344 (5)
O1A—H1OA 0.79 (4) O1B—H1OB 0.8464
O2A—C17A 1.347 (4) O2B—C17B 1.350 (4)
O2A—H2OA 0.85 (4) O2B—H2OB 0.73 (4)
N1A—C7A 1.278 (4) N1B—C7B 1.273 (4)
N1A—C8A 1.459 (4) N1B—C8B 1.460 (4)
N2A—C11A 1.276 (4) N2B—C11B 1.267 (5)
N2A—C10A 1.462 (4) N2B—C10B 1.463 (5)
C1A—C2A 1.390 (5) C1B—C2B 1.393 (5)
C1A—C6A 1.397 (5) C1B—C6B 1.410 (5)
C2A—C3A 1.378 (5) C2B—C3B 1.374 (6)
C2A—H2AA 0.9500 C2B—H2BA 0.9500
C3A—C4A 1.387 (5) C3B—C4B 1.381 (6)
C3A—H3AA 0.9500 C3B—H3BA 0.9500
C4A—C5A 1.372 (5) C4B—C5B 1.381 (5)
C5A—C6A 1.407 (5) C5B—C6B 1.402 (5)
C5A—H5AA 0.9500 C5B—H5BA 0.9500
C6A—C7A 1.454 (5) C6B—C7B 1.460 (5)
C7A—H7AA 0.9500 C7B—H7BA 0.9500
C8A—C9A 1.536 (5) C8B—C9B 1.540 (5)
C8A—H8AA 0.9900 C8B—H8BA 0.9900
C8A—H8AB 0.9900 C8B—H8BB 0.9900
C9A—C19A 1.524 (5) C9B—C19B 1.527 (5)
C9A—C18A 1.528 (5) C9B—C18B 1.533 (5)
C9A—C10A 1.534 (5) C9B—C10B 1.534 (5)
C10A—H10A 0.9900 C10B—H10C 0.9900
C10A—H10B 0.9900 C10B—H10D 0.9900
C11A—C12A 1.466 (5) C11B—C12B 1.458 (5)
C11A—H11A 0.9500 C11B—H11B 0.9500
C12A—C13A 1.403 (5) C12B—C13B 1.393 (5)
C12A—C17A 1.405 (5) C12B—C17B 1.407 (5)
C13A—C14A 1.379 (5) C13B—C14B 1.376 (5)
C13A—H13A 0.9500 C13B—H13B 0.9500
C14A—C15A 1.391 (5) C14B—C15B 1.385 (5)
C15A—C16A 1.371 (5) C15B—C16B 1.376 (5)
C15A—H15A 0.9500 C15B—H15B 0.9500
C16A—C17A 1.395 (5) C16B—C17B 1.391 (5)
C16A—H16A 0.9500 C16B—H16B 0.9500
C18A—H18A 0.9800 C18B—H18D 0.9800
C18A—H18B 0.9800 C18B—H18E 0.9800
C18A—H18C 0.9800 C18B—H18F 0.9800
C19A—H19A 0.9800 C19B—H19D 0.9800
C19A—H19B 0.9800 C19B—H19E 0.9800
C19A—H19C 0.9800 C19B—H19F 0.9800
C1A—O1A—H1OA 104 (3) C1B—O1B—H1OB 105.1
C17A—O2A—H2OA 104 (3) C17B—O2B—H2OB 109 (4)
C7A—N1A—C8A 119.7 (3) C7B—N1B—C8B 119.5 (3)
C11A—N2A—C10A 119.0 (3) C11B—N2B—C10B 118.2 (3)
O1A—C1A—C2A 118.2 (3) O1B—C1B—C2B 118.7 (4)
O1A—C1A—C6A 121.9 (3) O1B—C1B—C6B 121.7 (3)
C2A—C1A—C6A 119.9 (3) C2B—C1B—C6B 119.6 (4)
C3A—C2A—C1A 120.5 (4) C3B—C2B—C1B 120.5 (4)
C3A—C2A—H2AA 119.7 C3B—C2B—H2BA 119.7
C1A—C2A—H2AA 119.7 C1B—C2B—H2BA 119.8
C2A—C3A—C4A 119.8 (3) C2B—C3B—C4B 120.0 (3)
C2A—C3A—H3AA 120.1 C2B—C3B—H3BA 120.0
C4A—C3A—H3AA 120.1 C4B—C3B—H3BA 120.0
C5A—C4A—C3A 120.7 (3) C3B—C4B—C5B 121.2 (4)
C5A—C4A—Br1A 119.9 (3) C3B—C4B—Br1B 119.0 (3)
C3A—C4A—Br1A 119.4 (3) C5B—C4B—Br1B 119.8 (3)
C4A—C5A—C6A 120.0 (3) C4B—C5B—C6B 119.5 (4)
C4A—C5A—H5AA 120.0 C4B—C5B—H5BA 120.2
C6A—C5A—H5AA 120.0 C6B—C5B—H5BA 120.2
C1A—C6A—C5A 119.1 (3) C5B—C6B—C1B 119.2 (3)
C1A—C6A—C7A 121.3 (3) C5B—C6B—C7B 119.8 (3)
C5A—C6A—C7A 119.7 (3) C1B—C6B—C7B 121.0 (3)
N1A—C7A—C6A 120.5 (4) N1B—C7B—C6B 120.8 (3)
N1A—C7A—H7AA 119.8 N1B—C7B—H7BA 119.6
C6A—C7A—H7AA 119.8 C6B—C7B—H7BA 119.6
N1A—C8A—C9A 110.9 (3) N1B—C8B—C9B 110.8 (3)
N1A—C8A—H8AA 109.5 N1B—C8B—H8BA 109.5
C9A—C8A—H8AA 109.5 C9B—C8B—H8BA 109.5
N1A—C8A—H8AB 109.5 N1B—C8B—H8BB 109.5
C9A—C8A—H8AB 109.5 C9B—C8B—H8BB 109.5
H8AA—C8A—H8AB 108.0 H8BA—C8B—H8BB 108.1
C19A—C9A—C18A 110.1 (3) C19B—C9B—C18B 109.6 (3)
C19A—C9A—C10A 110.2 (3) C19B—C9B—C10B 110.8 (3)
C18A—C9A—C10A 107.8 (3) C18B—C9B—C10B 107.7 (3)
C19A—C9A—C8A 111.2 (3) C19B—C9B—C8B 111.0 (3)
C18A—C9A—C8A 109.8 (3) C18B—C9B—C8B 109.5 (3)
C10A—C9A—C8A 107.7 (3) C10B—C9B—C8B 108.1 (3)
N2A—C10A—C9A 112.1 (3) N2B—C10B—C9B 112.9 (3)
N2A—C10A—H10A 109.2 N2B—C10B—H10C 109.0
C9A—C10A—H10A 109.2 C9B—C10B—H10C 109.0
N2A—C10A—H10B 109.2 N2B—C10B—H10D 109.0
C9A—C10A—H10B 109.2 C9B—C10B—H10D 109.0
H10A—C10A—H10B 107.9 H10C—C10B—H10D 107.8
N2A—C11A—C12A 120.7 (3) N2B—C11B—C12B 121.6 (4)
N2A—C11A—H11A 119.7 N2B—C11B—H11B 119.2
C12A—C11A—H11A 119.7 C12B—C11B—H11B 119.2
C13A—C12A—C17A 119.2 (3) C13B—C12B—C17B 119.1 (3)
C13A—C12A—C11A 119.9 (3) C13B—C12B—C11B 120.1 (3)
C17A—C12A—C11A 120.9 (3) C17B—C12B—C11B 120.7 (3)
C14A—C13A—C12A 120.1 (3) C14B—C13B—C12B 120.2 (4)
C14A—C13A—H13A 119.9 C14B—C13B—H13B 119.9
C12A—C13A—H13A 119.9 C12B—C13B—H13B 119.9
C13A—C14A—C15A 120.8 (3) C13B—C14B—C15B 120.8 (3)
C13A—C14A—Br2A 120.2 (3) C13B—C14B—Br2B 119.8 (3)
C15A—C14A—Br2A 119.0 (2) C15B—C14B—Br2B 119.4 (3)
C16A—C15A—C14A 119.3 (3) C16B—C15B—C14B 119.7 (3)
C16A—C15A—H15A 120.3 C16B—C15B—H15B 120.1
C14A—C15A—H15A 120.3 C14B—C15B—H15B 120.1
C15A—C16A—C17A 121.4 (3) C15B—C16B—C17B 120.6 (4)
C15A—C16A—H16A 119.3 C15B—C16B—H16B 119.7
C17A—C16A—H16A 119.3 C17B—C16B—H16B 119.7
O2A—C17A—C16A 119.1 (3) O2B—C17B—C16B 119.0 (3)
O2A—C17A—C12A 121.8 (3) O2B—C17B—C12B 121.5 (3)
C16A—C17A—C12A 119.1 (3) C16B—C17B—C12B 119.5 (3)
C9A—C18A—H18A 109.5 C9B—C18B—H18D 109.5
C9A—C18A—H18B 109.5 C9B—C18B—H18E 109.5
H18A—C18A—H18B 109.5 H18D—C18B—H18E 109.5
C9A—C18A—H18C 109.5 C9B—C18B—H18F 109.5
H18A—C18A—H18C 109.5 H18D—C18B—H18F 109.5
H18B—C18A—H18C 109.5 H18E—C18B—H18F 109.5
C9A—C19A—H19A 109.5 C9B—C19B—H19D 109.5
C9A—C19A—H19B 109.5 C9B—C19B—H19E 109.5
H19A—C19A—H19B 109.5 H19D—C19B—H19E 109.5
C9A—C19A—H19C 109.5 C9B—C19B—H19F 109.5
H19A—C19A—H19C 109.5 H19D—C19B—H19F 109.5
H19B—C19A—H19C 109.5 H19E—C19B—H19F 109.5
O1A—C1A—C2A—C3A 178.1 (3) O1B—C1B—C2B—C3B 177.9 (3)
C6A—C1A—C2A—C3A −2.1 (5) C6B—C1B—C2B—C3B −2.1 (6)
C1A—C2A—C3A—C4A 0.7 (6) C1B—C2B—C3B—C4B 0.4 (6)
C2A—C3A—C4A—C5A 0.6 (5) C2B—C3B—C4B—C5B 1.2 (6)
C2A—C3A—C4A—Br1A −180.0 (3) C2B—C3B—C4B—Br1B −178.4 (3)
C3A—C4A—C5A—C6A −0.5 (5) C3B—C4B—C5B—C6B −1.0 (6)
Br1A—C4A—C5A—C6A −179.9 (3) Br1B—C4B—C5B—C6B 178.6 (3)
O1A—C1A—C6A—C5A −178.0 (3) C4B—C5B—C6B—C1B −0.7 (5)
C2A—C1A—C6A—C5A 2.1 (5) C4B—C5B—C6B—C7B 179.8 (3)
O1A—C1A—C6A—C7A 3.9 (5) O1B—C1B—C6B—C5B −177.7 (3)
C2A—C1A—C6A—C7A −176.0 (3) C2B—C1B—C6B—C5B 2.2 (5)
C4A—C5A—C6A—C1A −0.9 (5) O1B—C1B—C6B—C7B 1.7 (5)
C4A—C5A—C6A—C7A 177.2 (3) C2B—C1B—C6B—C7B −178.3 (3)
C8A—N1A—C7A—C6A 176.5 (3) C8B—N1B—C7B—C6B 178.6 (3)
C1A—C6A—C7A—N1A −4.1 (5) C5B—C6B—C7B—N1B 175.9 (3)
C5A—C6A—C7A—N1A 177.8 (3) C1B—C6B—C7B—N1B −3.6 (5)
C7A—N1A—C8A—C9A −122.4 (4) C7B—N1B—C8B—C9B −126.7 (4)
N1A—C8A—C9A—C19A −56.1 (4) N1B—C8B—C9B—C19B −56.8 (4)
N1A—C8A—C9A—C18A 66.0 (4) N1B—C8B—C9B—C18B 64.4 (4)
N1A—C8A—C9A—C10A −176.9 (3) N1B—C8B—C9B—C10B −178.5 (3)
C11A—N2A—C10A—C9A −136.7 (3) C11B—N2B—C10B—C9B −119.8 (4)
C19A—C9A—C10A—N2A −57.3 (4) C19B—C9B—C10B—N2B −59.5 (4)
C18A—C9A—C10A—N2A −177.5 (3) C18B—C9B—C10B—N2B −179.4 (3)
C8A—C9A—C10A—N2A 64.2 (4) C8B—C9B—C10B—N2B 62.3 (4)
C10A—N2A—C11A—C12A −176.9 (3) C10B—N2B—C11B—C12B 179.4 (3)
N2A—C11A—C12A—C13A 179.2 (3) N2B—C11B—C12B—C13B −172.0 (3)
N2A—C11A—C12A—C17A 1.9 (5) N2B—C11B—C12B—C17B 8.8 (5)
C17A—C12A—C13A—C14A 2.0 (5) C17B—C12B—C13B—C14B 1.0 (5)
C11A—C12A—C13A—C14A −175.4 (3) C11B—C12B—C13B—C14B −178.2 (3)
C12A—C13A—C14A—C15A −0.1 (5) C12B—C13B—C14B—C15B 0.9 (5)
C12A—C13A—C14A—Br2A 178.7 (3) C12B—C13B—C14B—Br2B −178.3 (3)
C13A—C14A—C15A—C16A −1.4 (5) C13B—C14B—C15B—C16B −1.3 (5)
Br2A—C14A—C15A—C16A 179.8 (3) Br2B—C14B—C15B—C16B 177.9 (3)
C14A—C15A—C16A—C17A 0.9 (5) C14B—C15B—C16B—C17B −0.2 (5)
C15A—C16A—C17A—O2A −178.9 (3) C15B—C16B—C17B—O2B −178.5 (3)
C15A—C16A—C17A—C12A 1.0 (5) C15B—C16B—C17B—C12B 2.0 (5)
C13A—C12A—C17A—O2A 177.5 (3) C13B—C12B—C17B—O2B 178.1 (3)
C11A—C12A—C17A—O2A −5.2 (5) C11B—C12B—C17B—O2B −2.7 (5)
C13A—C12A—C17A—C16A −2.4 (5) C13B—C12B—C17B—C16B −2.4 (5)
C11A—C12A—C17A—C16A 174.9 (3) C11B—C12B—C17B—C16B 176.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1B—H1OB···N1B 0.85 1.81 2.580 (4) 151.
O2A—H2OA···N2A 0.85 (4) 1.79 (4) 2.578 (4) 154 (4)
O1A—H1OA···N1A 0.79 (5) 1.85 (5) 2.572 (4) 153 (4)
O2B—H2OB···N2B 0.73 (5) 1.94 (5) 2.586 (4) 149 (5)
C8A—H8AA···N2A 0.99 2.58 2.960 (4) 103.
C8B—H8BA···N2B 0.99 2.60 2.966 (4) 102.
C16B—H16B···O2Bi 0.95 2.58 3.290 (5) 131.
C19A—H19B···N1A 0.98 2.58 2.918 (4) 100.
C19A—H19C···N2A 0.98 2.58 2.933 (5) 101.
C19B—H19F···N1B 0.98 2.60 2.926 (5) 100.
C7B—H7BA···Cg1ii 0.95 2.96 3.571 (4) 123.
C18B—H18D···Cg2iii 0.98 2.77 3.652 (4) 151.

Symmetry codes: (i) −x, −y+1, −z; (ii) x, y−1, z; (iii) x, −y−1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2626).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon.
  5. Casellato, U. & Vigato, P. A. (1977). Coord. Chem. Rev.23, 31–50.
  6. Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308. [DOI] [PMC free article] [PubMed]
  7. Fun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335. [DOI] [PMC free article] [PubMed]
  8. Fun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008a). Acta Cryst. E64, o1374–o1375. [DOI] [PMC free article] [PubMed]
  9. Fun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008b). Acta Cryst. E64, o1471. [DOI] [PMC free article] [PubMed]
  10. Hou, B., Friedman, N., Ruhman, S., Sheves, M. & Ottolenghi, M. (2001). J. Phys. Chem. B, 105, 7042–7048.
  11. Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem.44, 3880–3889. [DOI] [PubMed]
  12. Reglinski, J., Taylor, M. K. & Kennedy, A. R. (2004). Acta Cryst. C60, o169–o172. [DOI] [PubMed]
  13. Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem.45, 410–419. [DOI] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680802816X/at2626sup1.cif

e-64-o1895-sup1.cif (30.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802816X/at2626Isup2.hkl

e-64-o1895-Isup2.hkl (546.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES