Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Jun;95(6):2483–2490. doi: 10.1172/JCI117949

Tissue plasminogen activator (tPA) inhibits plasmin degradation of fibrin. A mechanism that slows tPA-mediated fibrinolysis but does not require alpha 2-antiplasmin or leakage of intrinsic plasminogen.

J H Wu 1, S L Diamond 1
PMCID: PMC295930  PMID: 7769094

Abstract

Thrombolysis is dramatically slower when high concentrations of lytic agent are used. This paradoxical observation, first described as "plasminogen steal," was originally believed to be due to depletion of extrinsic plasminogen and consequent leaching of clot-bound plasminogen. We report that administration of increasing concentrations of recombinant human tissue plasminogen activator (tPA) to fibrin gels resulted in lysis rates that displayed a maximum, with significantly slower rates found at higher tPA, regardless of whether plasminogen was supplied extrinsically or intrinsically. A similar maximum in lysis rates was observed in a system lacking an extrinsic phase when plasminogen was added to fibrin suspensions preincubated with increasing tPA. Thus, intrinsic plasminogen leakage and alpha 2-antiplasmin were not required for the decreased lysis at high tPA. No maximum was observed for increasing concentrations of urokinase. Using fibrin suspensions or gels preincubated with tPA before addition of plasmin, we report that tPA, but not urokinase, caused a dose-dependent inhibition of the fibronolytic action of plasmin. With respect to optimal dosage schemes and the design of novel lytic agents, these findings indicate that (a) there exists a biochemical mechanism against minimizing reperfusion time with increasing tPA dosages and (b) the fibrin affinity of tPA may cause reduced fibrinolysis by plasmin.

Full text

PDF
2483

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blinc A., Planinsic G., Keber D., Jarh O., Lahajnar G., Zidansek A., Demsar F. Dependence of blood clot lysis on the mode of transport of urokinase into the clot--a magnetic resonance imaging study in vitro. Thromb Haemost. 1991 May 6;65(5):549–552. [PubMed] [Google Scholar]
  2. Carr M. E., Jr, Shen L. L., Hermans J. Mass-length ratio of fibrin fibers from gel permeation and light scattering. Biopolymers. 1977 Jan;16(1):1–15. doi: 10.1002/bip.1977.360160102. [DOI] [PubMed] [Google Scholar]
  3. Diamond S. L., Anand S. Inner clot diffusion and permeation during fibrinolysis. Biophys J. 1993 Dec;65(6):2622–2643. doi: 10.1016/S0006-3495(93)81314-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Edelberg J., Pizzo S. V. Lipoprotein (a) regulates plasmin generation and inhibition. Chem Phys Lipids. 1994 Jan;67-68:363–368. doi: 10.1016/0009-3084(94)90158-9. [DOI] [PubMed] [Google Scholar]
  5. Fears R. Binding of plasminogen activators to fibrin: characterization and pharmacological consequences. Biochem J. 1989 Jul 15;261(2):313–324. doi: 10.1042/bj2610313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GENTON E., FLETCHER A. P., ALKJAERSIG N., SHERRY S. ASSAY OF PLASMA THROMBOLYTIC ACTIVITY WITH FLUORESCEIN-LABELED CLOTS. J Lab Clin Med. 1964 Aug;64:313–320. [PubMed] [Google Scholar]
  7. Gething M. J., Adler B., Boose J. A., Gerard R. D., Madison E. L., McGookey D., Meidell R. S., Roman L. M., Sambrook J. Variants of human tissue-type plasminogen activator that lack specific structural domains of the heavy chain. EMBO J. 1988 Sep;7(9):2731–2740. doi: 10.1002/j.1460-2075.1988.tb03127.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Harpel P. C., Chang T. S., Verderber E. Tissue plasminogen activator and urokinase mediate the binding of Glu-plasminogen to plasma fibrin I. Evidence for new binding sites in plasmin-degraded fibrin I. J Biol Chem. 1985 Apr 10;260(7):4432–4440. [PubMed] [Google Scholar]
  9. Husain S. S. Fibrin affinity of urokinase-type plasminogen activator. Evidence that Zn2+ mediates strong and specific interaction of single-chain urokinase with fibrin. J Biol Chem. 1993 Apr 25;268(12):8574–8579. [PubMed] [Google Scholar]
  10. Kanai S., Okamoto H., Tamaura Y., Yamazaki S., Inada Y. Fibrin suspension as a substrate fop plasmin: determination and kinetics. Thromb Haemost. 1979 Dec 21;42(4):1153–1158. [PubMed] [Google Scholar]
  11. Lottenberg R., Christensen U., Jackson C. M., Coleman P. L. Assay of coagulation proteases using peptide chromogenic and fluorogenic substrates. Methods Enzymol. 1981;80(Pt 100):341–361. doi: 10.1016/s0076-6879(81)80030-4. [DOI] [PubMed] [Google Scholar]
  12. Lucas M. A., Fretto L. J., McKee P. A. The binding of human plasminogen to fibrin and fibrinogen. J Biol Chem. 1983 Apr 10;258(7):4249–4256. [PubMed] [Google Scholar]
  13. Nishino N., Kakkar V. V., Scully M. F. Influence of intrinsic and extrinsic plasminogen upon the lysis of thrombi in vitro. Thromb Haemost. 1991 Dec 2;66(6):672–677. [PubMed] [Google Scholar]
  14. Onundarson P. T., Francis C. W., Marder V. J. Depletion of plasminogen in vitro or during thrombolytic therapy limits fibrinolytic potential. J Lab Clin Med. 1992 Jul;120(1):120–128. [PubMed] [Google Scholar]
  15. Pennica D., Holmes W. E., Kohr W. J., Harkins R. N., Vehar G. A., Ward C. A., Bennett W. F., Yelverton E., Seeburg P. H., Heyneker H. L. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature. 1983 Jan 20;301(5897):214–221. doi: 10.1038/301214a0. [DOI] [PubMed] [Google Scholar]
  16. Pizzo S. V., Schwartz M. L., Hill R. L., McKee P. A. The effect of plasmin on the subunit structure of human fibrin. J Biol Chem. 1973 Jul 10;248(13):4574–4583. [PubMed] [Google Scholar]
  17. Pizzo S. V., Schwartz M. L., Hill R. L., McKee P. A. The effect of plasmin on the subunit structure of human fibrinogen. J Biol Chem. 1972 Feb 10;247(3):636–645. [PubMed] [Google Scholar]
  18. Robbie L. A., Booth N. A., Croll A. M., Bennett B. The roles of alpha 2-antiplasmin and plasminogen activator inhibitor 1 (PAI-1) in the inhibition of clot lysis. Thromb Haemost. 1993 Aug 2;70(2):301–306. [PubMed] [Google Scholar]
  19. Sabovic M., Lijnen H. R., Keber D., Collen D. Correlation between progressive adsorption of plasminogen to blood clots and their sensitivity to lysis. Thromb Haemost. 1990 Nov 30;64(3):450–454. [PubMed] [Google Scholar]
  20. Sabovic M., Lijnen H. R., Keber D., Collen D. Effect of retraction on the lysis of human clots with fibrin specific and non-fibrin specific plasminogen activators. Thromb Haemost. 1989 Dec 29;62(4):1083–1087. [PubMed] [Google Scholar]
  21. Schielen W. J., Adams H. P., Voskuilen M., Tesser G. I., Nieuwenhuizen W. The sequence A alpha-(154-159) of fibrinogen is capable of accelerating the t-PA catalysed activation of plasminogen. Blood Coagul Fibrinolysis. 1991 Jun;2(3):465–470. doi: 10.1097/00001721-199106000-00010. [DOI] [PubMed] [Google Scholar]
  22. Schielen W. J., Adams H. P., van Leuven K., Voskuilen M., Tesser G. I., Nieuwenhuizen W. The sequence gamma-(312-324) is a fibrin-specific epitope. Blood. 1991 May 15;77(10):2169–2173. [PubMed] [Google Scholar]
  23. Suenson E., Lützen O., Thorsen S. Initial plasmin-degradation of fibrin as the basis of a positive feed-back mechanism in fibrinolysis. Eur J Biochem. 1984 May 2;140(3):513–522. doi: 10.1111/j.1432-1033.1984.tb08132.x. [DOI] [PubMed] [Google Scholar]
  24. Takagi T., Doolittle R. F. Amino acid sequence studies on plasmin-derived fragments of human fibrinogen: amino-terminal sequences of intermediate and terminal fragments. Biochemistry. 1975 Mar 11;14(5):940–946. doi: 10.1021/bi00676a010. [DOI] [PubMed] [Google Scholar]
  25. Torr S. R., Nachowiak D. A., Fujii S., Sobel B. E. "Plasminogen steal" and clot lysis. J Am Coll Cardiol. 1992 Apr;19(5):1085–1090. doi: 10.1016/0735-1097(92)90300-c. [DOI] [PubMed] [Google Scholar]
  26. Wu J. H., Diamond S. L. A fluorescence quench and dequench assay of fibrinogen polymerization, fibrinogenolysis, or fibrinolysis. Anal Biochem. 1995 Jan 1;224(1):83–91. doi: 10.1006/abio.1995.1011. [DOI] [PubMed] [Google Scholar]
  27. Wu J. H., Siddiqui K., Diamond S. L. Transport phenomena and clot dissolving therapy: an experimental investigation of diffusion-controlled and permeation-enhanced fibrinolysis. Thromb Haemost. 1994 Jul;72(1):105–112. [PubMed] [Google Scholar]
  28. Yonekawa O., Voskuilen M., Nieuwenhuizen W. Localization in the fibrinogen gamma-chain of a new site that is involved in the acceleration of the tissue-type plasminogen activator-catalysed activation of plasminogen. Biochem J. 1992 Apr 1;283(Pt 1):187–191. doi: 10.1042/bj2830187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zidansek A., Blinc A. The influence of transport parameters and enzyme kinetics of the fibrinolytic system on thrombolysis: mathematical modelling of two idealised cases. Thromb Haemost. 1991 May 6;65(5):553–559. [PubMed] [Google Scholar]
  30. de Vries C., Veerman H., Koornneef E., Pannekoek H. Tissue-type plasminogen activator and its substrate Glu-plasminogen share common binding sites in limited plasmin-digested fibrin. J Biol Chem. 1990 Aug 15;265(23):13547–13552. [PubMed] [Google Scholar]
  31. de Vries C., Veerman H., Pannekoek H. Identification of the domains of tissue-type plasminogen activator involved in the augmented binding to fibrin after limited digestion with plasmin. J Biol Chem. 1989 Jul 25;264(21):12604–12610. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES