Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 6;64(Pt 10):m1250–m1251. doi: 10.1107/S1600536808028134

(Imidazole-κN 3){N-[1-(2-oxidophenyl)ethylidene]-l-valinato-κ3 O,N,O′}copper(II)

Gan-Qing Zhao a,*, Qiao-Ru Liu a, Wei-Chun Yang a, Song-Tian Li a, Xiang Wang a
PMCID: PMC2959304  PMID: 21201007

Abstract

In each of the two independent mol­ecules in the asymmetric unit of the title compound, [Cu(C13H15NO3)(C3H4N2)], the CuII atom is four-coordinated by two O atoms and the N atom of the tridentate Schiff base ligand and one N atom from the imidazole ligand in a distorted square-planar geometry. In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Basu Baul et al. (2007); Casella & Guillotti (1983); Ganguly et al. (2008); Parekh et al. (2006); Plesch et al. (1997); Usman et al. (2003); Vigato & Tamburini (2004).graphic file with name e-64-m1250-scheme1.jpg

Experimental

Crystal data

  • [Cu(C13H15NO3)(C3H4N2)]

  • M r = 364.88

  • Orthorhombic, Inline graphic

  • a = 12.2025 (13) Å

  • b = 13.5248 (14) Å

  • c = 19.791 (2) Å

  • V = 3266.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.35 mm−1

  • T = 296 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.687, T max = 0.773

  • 17018 measured reflections

  • 5764 independent reflections

  • 4619 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.086

  • S = 1.03

  • 5764 reflections

  • 421 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.50 e Å−3

  • Absolute structure: Flack (1983), 2509 Friedel pairs

  • Flack parameter: 0.004 (13)

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808028134/at2627sup1.cif

e-64-m1250-sup1.cif (25.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028134/at2627Isup2.hkl

e-64-m1250-Isup2.hkl (282.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Cu1—O1 1.867 (3)
Cu1—N1 1.941 (3)
Cu1—O2 1.945 (2)
Cu1—N2 1.972 (3)
Cu2—O4 1.868 (3)
Cu2—N4 1.937 (3)
Cu2—O5 1.949 (3)
Cu2—N5 1.969 (3)
O1—Cu1—N1 92.94 (13)
O1—Cu1—O2 175.69 (13)
N1—Cu1—O2 85.25 (12)
O1—Cu1—N2 90.51 (12)
N1—Cu1—N2 169.97 (14)
O2—Cu1—N2 91.92 (11)
O4—Cu2—N4 92.79 (13)
O4—Cu2—O5 173.64 (14)
N4—Cu2—O5 84.85 (12)
O4—Cu2—N5 90.96 (12)
N4—Cu2—N5 170.17 (14)
O5—Cu2—N5 92.32 (12)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O6i 0.86 1.91 2.764 (4) 172

Symmetry code: (i) Inline graphic.

Acknowledgments

This research was supported by the National Science Foundation of China (No. 20676057).

supplementary crystallographic information

Comment

In the past decades, significant progress has been achieved in understanding the chemistry of transition metal complexes with Schiff base ligands composed of salicylaldehyde, 2-formylpyridine or their analogues, and α-amino acids (Vigato & Tamburini, 2004; Ganguly et al., 2008; Casella & Guillotti, 1983). A few stuctural studies have been performed on Schiff base complexes derived from 2-hydroxyacetophenone and animo acids (Usman et al., 2003; Basu Baul et al., 2007; Parekh et al., 2006). We report here the crystal structure of the title CuII complex, (I).

In the title compound (I), the asymmetric unit contains two independent molecules (Fig. 1). The structure consists of discrete monomeric square-planar CuII complex (Table 1). The four basal positions are occupied by three donor atoms from the tridentate Schiff base ligand, which furnishes an ONO donor set, with the fourth position occupied by one N atom from the imidazole ligand. In the molecules with Cu1 and Cu2, the nitrogen heterocycles are planar and they form the angles of 4.2 (2) and 6.0 (2)° with the C1—C6 and C17–C32 rings, respectively.

The crystal structure is stabilized by intermolecular N—H···O hydrogen bonds (Fig. 2 and Table 2), which the H atom attached to N3 is hydrogen-bonded to the neighboring carboxylate oxygen O6.

Experimental

The title compound was synthesized as described in the literature (Plesch et al., 1997). To L-valine (1.00 mmol) and potassium hydroxide (1.00 mmol) in 10 ml of methanol was added 2-hydroxyacetophenone (1.00 mmol in 10 ml of methanol) dropwise. The yellow solution was stirred for 2.0 h at 333 K. The resultant mixture was added dropwise to copper(II) acetate monohydrate (1.00 mmol) and imidazole (1.00 mmol) in an aqueous methanolic solution (20 ml, 1:1 v/v), and heated with stirring for 2.0 h at 333 K. The dark blue solution was filtered and left for several days, dark blue crystals had formed that were filtered off, washed with water, and dried under vacuum.

Refinement

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 or 0.98 Å (CH) and Uiso(H) = 1.2Ueq(C), with C—H = 0.96 Å (CH3) and Uiso(H) = 1.5Ueq(C), and with N—H = 0.86 Å (NH) and Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. For clarity, H atoms have been omitted.

Fig. 2.

Fig. 2.

A view of the crystal packing of (I) along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

[Cu(C13H15NO3)(C3H4N2)] F(000) = 1512
Mr = 364.88 Dx = 1.484 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 4789 reflections
a = 12.2025 (13) Å θ = 2.3–23.6°
b = 13.5248 (14) Å µ = 1.36 mm1
c = 19.791 (2) Å T = 296 K
V = 3266.2 (6) Å3 Block, dark blue
Z = 8 0.30 × 0.20 × 0.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer 5764 independent reflections
Radiation source: fine-focus sealed tube 4619 reflections with I > 2σ(I)
graphite Rint = 0.031
φ and ω scans θmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −14→14
Tmin = 0.687, Tmax = 0.773 k = −14→16
17018 measured reflections l = −23→21

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0297P)2 + 1.2486P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
5764 reflections Δρmax = 0.33 e Å3
421 parameters Δρmin = −0.50 e Å3
0 restraints Absolute structure: Flack (1983), 2509 Freidel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.004 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.52180 (4) 0.63527 (4) 0.08491 (2) 0.04826 (14)
Cu2 0.65002 (3) 0.85812 (4) 0.60823 (2) 0.04751 (14)
C1 0.6063 (3) 0.6039 (3) −0.0474 (2) 0.0532 (11)
C2 0.5832 (4) 0.5745 (4) −0.1145 (2) 0.0655 (13)
H2 0.5106 0.5699 −0.1284 0.079*
C3 0.6650 (5) 0.5528 (4) −0.1596 (2) 0.0745 (14)
H3 0.6474 0.5333 −0.2033 0.089*
C4 0.7750 (4) 0.5597 (4) −0.1401 (3) 0.0738 (15)
H4 0.8310 0.5448 −0.1703 0.089*
C5 0.7979 (4) 0.5886 (3) −0.0761 (3) 0.0624 (12)
H5 0.8711 0.5944 −0.0637 0.075*
C6 0.7169 (3) 0.6106 (3) −0.0269 (2) 0.0506 (11)
C7 0.7512 (3) 0.6428 (3) 0.0404 (2) 0.0515 (10)
C8 0.7081 (3) 0.6986 (3) 0.1538 (2) 0.0490 (10)
H8 0.7813 0.6752 0.1665 0.059*
C9 0.6246 (3) 0.6621 (3) 0.2057 (2) 0.0503 (11)
C10 0.8720 (3) 0.6564 (4) 0.0537 (2) 0.0719 (15)
H10A 0.9015 0.7031 0.0221 0.108*
H10B 0.9088 0.5941 0.0487 0.108*
H10C 0.8824 0.6805 0.0989 0.108*
C11 0.7088 (4) 0.8124 (3) 0.1499 (2) 0.0636 (13)
H11 0.7550 0.8299 0.1112 0.076*
C12 0.5957 (4) 0.8557 (4) 0.1357 (3) 0.0809 (15)
H12A 0.5476 0.8413 0.1728 0.121*
H12B 0.5667 0.8270 0.0951 0.121*
H12C 0.6015 0.9260 0.1302 0.121*
C13 0.7593 (5) 0.8599 (5) 0.2100 (3) 0.1054 (19)
H13A 0.7127 0.8503 0.2486 0.158*
H13B 0.7681 0.9294 0.2017 0.158*
H13C 0.8296 0.8306 0.2185 0.158*
C14 0.2976 (3) 0.6635 (3) 0.1369 (2) 0.0558 (12)
H14 0.3233 0.6875 0.1780 0.067*
C15 0.1879 (3) 0.6175 (3) 0.0578 (2) 0.0567 (12)
H15 0.1251 0.6030 0.0331 0.068*
C16 0.2909 (3) 0.6085 (3) 0.0364 (2) 0.0524 (11)
H16 0.3120 0.5863 −0.0061 0.063*
C17 0.5693 (3) 0.8710 (3) 0.47462 (19) 0.0457 (9)
C18 0.5908 (3) 0.8916 (3) 0.4066 (2) 0.0539 (11)
H18 0.6633 0.8948 0.3923 0.065*
C19 0.5093 (4) 0.9074 (3) 0.3601 (2) 0.0606 (12)
H19 0.5269 0.9213 0.3154 0.073*
C20 0.4009 (4) 0.9024 (3) 0.3801 (3) 0.0625 (13)
H20 0.3449 0.9150 0.3494 0.075*
C21 0.3770 (3) 0.8788 (3) 0.4455 (2) 0.0584 (12)
H21 0.3037 0.8742 0.4579 0.070*
C22 0.4572 (3) 0.8610 (3) 0.49521 (18) 0.0433 (9)
C23 0.4247 (3) 0.8301 (3) 0.5626 (2) 0.0444 (10)
C24 0.4742 (3) 0.7757 (3) 0.67720 (18) 0.0465 (9)
H24 0.3968 0.7869 0.6881 0.056*
C25 0.5459 (3) 0.8289 (3) 0.7284 (2) 0.0537 (12)
C26 0.3039 (3) 0.8159 (3) 0.5762 (2) 0.0554 (11)
H26A 0.2935 0.7965 0.6225 0.083*
H26B 0.2756 0.7653 0.5470 0.083*
H26C 0.2657 0.8767 0.5679 0.083*
C27 0.4998 (3) 0.6645 (3) 0.6814 (2) 0.0556 (11)
H27 0.4895 0.6449 0.7286 0.067*
C28 0.6189 (4) 0.6388 (4) 0.6627 (2) 0.0792 (14)
H28A 0.6310 0.5694 0.6695 0.119*
H28B 0.6681 0.6758 0.6909 0.119*
H28C 0.6319 0.6552 0.6162 0.119*
C29 0.4234 (4) 0.6023 (4) 0.6399 (3) 0.0898 (18)
H29A 0.3491 0.6161 0.6527 0.135*
H29B 0.4390 0.5336 0.6475 0.135*
H29C 0.4333 0.6174 0.5929 0.135*
C30 0.8785 (3) 0.8880 (3) 0.5586 (2) 0.0519 (11)
H30 0.8581 0.8966 0.5137 0.062*
C31 0.9781 (3) 0.8710 (3) 0.64947 (17) 0.0363 (8)
H31 1.0370 0.8654 0.6791 0.044*
C32 0.8746 (3) 0.8686 (4) 0.6653 (2) 0.0588 (11)
H32 0.8492 0.8608 0.7093 0.071*
N1 0.6788 (2) 0.6579 (2) 0.08787 (16) 0.0469 (8)
N2 0.3602 (2) 0.6369 (3) 0.08634 (15) 0.0482 (7)
N3 0.1914 (2) 0.6513 (3) 0.12130 (17) 0.0559 (9)
H3A 0.1362 0.6630 0.1471 0.067*
N4 0.4983 (2) 0.8161 (2) 0.60987 (17) 0.0437 (7)
N5 0.8097 (2) 0.8782 (2) 0.61290 (16) 0.0478 (8)
N6 0.9835 (3) 0.8827 (3) 0.5834 (3) 0.0933 (16)
H6 1.0426 0.8865 0.5599 0.112*
O1 0.5208 (2) 0.6222 (2) −0.00899 (13) 0.0623 (8)
O2 0.52949 (19) 0.6399 (2) 0.18300 (12) 0.0534 (7)
O3 0.6509 (2) 0.6600 (3) 0.26604 (14) 0.0701 (10)
O4 0.65434 (19) 0.8605 (3) 0.51391 (13) 0.0631 (8)
O5 0.6344 (2) 0.8681 (3) 0.70602 (13) 0.0640 (8)
O6 0.5198 (2) 0.8268 (3) 0.78876 (14) 0.0691 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0364 (2) 0.0606 (3) 0.0478 (3) 0.0005 (3) 0.0044 (2) 0.0034 (3)
Cu2 0.0345 (2) 0.0625 (3) 0.0455 (3) −0.0071 (2) −0.0017 (2) −0.0016 (3)
C1 0.056 (2) 0.056 (3) 0.048 (3) 0.008 (2) 0.010 (2) 0.009 (2)
C2 0.060 (3) 0.084 (3) 0.053 (3) 0.004 (2) 0.005 (2) 0.008 (3)
C3 0.099 (4) 0.077 (3) 0.047 (3) 0.001 (3) 0.013 (3) 0.003 (2)
C4 0.075 (3) 0.075 (4) 0.071 (4) 0.011 (3) 0.028 (3) 0.005 (3)
C5 0.051 (2) 0.064 (3) 0.072 (3) 0.002 (2) 0.015 (2) 0.007 (3)
C6 0.045 (2) 0.051 (3) 0.055 (3) 0.0040 (19) 0.0146 (19) 0.0125 (19)
C7 0.043 (2) 0.051 (3) 0.060 (3) 0.007 (2) 0.0099 (19) 0.012 (3)
C8 0.0331 (19) 0.061 (3) 0.053 (3) 0.0006 (19) 0.0002 (18) 0.013 (2)
C9 0.042 (2) 0.059 (3) 0.050 (3) 0.0055 (19) 0.0032 (19) 0.006 (2)
C10 0.037 (2) 0.109 (4) 0.069 (3) 0.006 (3) 0.015 (2) 0.016 (3)
C11 0.055 (3) 0.063 (3) 0.072 (3) −0.011 (2) −0.013 (2) 0.003 (2)
C12 0.079 (3) 0.057 (3) 0.107 (4) 0.008 (3) −0.033 (3) −0.003 (3)
C13 0.117 (5) 0.098 (4) 0.102 (4) −0.018 (4) −0.044 (4) 0.000 (4)
C14 0.041 (2) 0.078 (3) 0.049 (2) 0.001 (2) 0.0043 (19) −0.005 (2)
C15 0.043 (2) 0.080 (3) 0.047 (2) 0.001 (2) −0.0065 (19) −0.002 (2)
C16 0.048 (2) 0.069 (3) 0.040 (2) 0.000 (2) −0.0019 (19) −0.002 (2)
C17 0.043 (2) 0.049 (2) 0.046 (2) 0.003 (2) −0.0036 (18) −0.004 (2)
C18 0.046 (2) 0.069 (3) 0.046 (3) 0.002 (2) −0.0026 (19) 0.000 (2)
C19 0.066 (3) 0.064 (3) 0.051 (3) 0.001 (2) 0.000 (2) 0.004 (2)
C20 0.056 (3) 0.076 (3) 0.056 (3) 0.000 (2) −0.014 (2) 0.011 (2)
C21 0.041 (2) 0.071 (3) 0.064 (3) 0.000 (2) −0.006 (2) 0.001 (2)
C22 0.0382 (19) 0.048 (2) 0.044 (2) −0.001 (2) −0.0069 (16) −0.003 (2)
C23 0.0374 (19) 0.047 (3) 0.049 (2) −0.0028 (17) 0.0002 (18) −0.0089 (18)
C24 0.0325 (18) 0.062 (3) 0.045 (2) −0.0064 (19) 0.0031 (18) −0.0033 (19)
C25 0.034 (2) 0.076 (3) 0.050 (3) −0.003 (2) −0.0044 (19) −0.005 (2)
C26 0.034 (2) 0.077 (3) 0.054 (3) −0.003 (2) −0.0013 (19) −0.006 (2)
C27 0.054 (2) 0.065 (3) 0.048 (2) −0.004 (2) 0.0015 (19) 0.003 (2)
C28 0.074 (3) 0.082 (3) 0.081 (3) 0.021 (3) 0.018 (3) 0.012 (3)
C29 0.105 (4) 0.074 (4) 0.091 (4) −0.012 (3) −0.018 (3) −0.003 (3)
C30 0.041 (2) 0.068 (3) 0.047 (2) −0.009 (2) −0.0002 (18) −0.006 (2)
C31 0.0283 (17) 0.053 (2) 0.0273 (18) −0.003 (2) −0.0090 (15) 0.0052 (19)
C32 0.052 (2) 0.075 (3) 0.049 (2) −0.013 (3) −0.005 (2) 0.016 (3)
N1 0.0393 (17) 0.054 (2) 0.0472 (19) −0.0001 (15) 0.0052 (15) 0.0091 (17)
N2 0.0408 (16) 0.060 (2) 0.0439 (18) −0.0004 (18) 0.0032 (14) −0.001 (2)
N3 0.0388 (17) 0.076 (3) 0.053 (2) 0.0006 (19) 0.0066 (15) −0.001 (2)
N4 0.0353 (16) 0.0518 (19) 0.0440 (18) −0.0038 (14) −0.0009 (14) −0.0054 (15)
N5 0.0383 (16) 0.060 (2) 0.0451 (18) −0.0067 (17) 0.0001 (15) 0.0047 (18)
N6 0.047 (2) 0.083 (3) 0.149 (5) −0.002 (2) 0.002 (3) −0.024 (3)
O1 0.0461 (15) 0.095 (2) 0.0457 (16) 0.0086 (19) 0.0045 (13) 0.0038 (16)
O2 0.0373 (13) 0.0749 (18) 0.0479 (15) −0.0075 (18) 0.0039 (12) 0.0035 (16)
O3 0.0458 (15) 0.115 (3) 0.0492 (18) −0.0072 (18) −0.0004 (14) 0.0161 (18)
O4 0.0356 (13) 0.107 (2) 0.0465 (16) −0.003 (2) −0.0004 (12) −0.0003 (18)
O5 0.0450 (15) 0.096 (2) 0.0507 (17) −0.019 (2) −0.0016 (13) −0.0106 (18)
O6 0.0445 (15) 0.121 (3) 0.0417 (18) −0.0093 (17) 0.0043 (14) −0.0130 (16)

Geometric parameters (Å, °)

Cu1—O1 1.867 (3) C15—H15 0.9300
Cu1—N1 1.941 (3) C16—N2 1.356 (5)
Cu1—O2 1.945 (2) C16—H16 0.9300
Cu1—N2 1.972 (3) C17—O4 1.304 (4)
Cu2—O4 1.868 (3) C17—C18 1.399 (5)
Cu2—N4 1.937 (3) C17—C22 1.433 (5)
Cu2—O5 1.949 (3) C18—C19 1.371 (5)
Cu2—N5 1.969 (3) C18—H18 0.9300
C1—O1 1.314 (5) C19—C20 1.383 (6)
C1—C6 1.412 (6) C19—H19 0.9300
C1—C2 1.415 (6) C20—C21 1.363 (6)
C2—C3 1.371 (6) C20—H20 0.9300
C2—H2 0.9300 C21—C22 1.409 (5)
C3—C4 1.399 (7) C21—H21 0.9300
C3—H3 0.9300 C22—C23 1.453 (5)
C4—C5 1.355 (6) C23—N4 1.311 (5)
C4—H4 0.9300 C23—C26 1.511 (5)
C5—C6 1.419 (6) C24—N4 1.470 (5)
C5—H5 0.9300 C24—C25 1.520 (5)
C6—C7 1.464 (6) C24—C27 1.539 (6)
C7—N1 1.305 (4) C24—H24 0.9800
C7—C10 1.508 (5) C25—O6 1.236 (5)
C8—N1 1.461 (5) C25—O5 1.282 (4)
C8—C9 1.528 (5) C26—H26A 0.9600
C8—C11 1.541 (6) C26—H26B 0.9600
C8—H8 0.9800 C26—H26C 0.9600
C9—O3 1.237 (5) C27—C29 1.500 (6)
C9—O2 1.281 (4) C27—C28 1.539 (6)
C10—H10A 0.9600 C27—H27 0.9800
C10—H10B 0.9600 C28—H28A 0.9600
C10—H10C 0.9600 C28—H28B 0.9600
C11—C13 1.484 (6) C28—H28C 0.9600
C11—C12 1.526 (6) C29—H29A 0.9600
C11—H11 0.9800 C29—H29B 0.9600
C12—H12A 0.9600 C29—H29C 0.9600
C12—H12B 0.9600 C30—N5 1.370 (5)
C12—H12C 0.9600 C30—N6 1.375 (5)
C13—H13A 0.9600 C30—H30 0.9300
C13—H13B 0.9600 C31—C32 1.302 (5)
C13—H13C 0.9600 C31—N6 1.319 (5)
C14—N2 1.310 (5) C31—H31 0.9300
C14—N3 1.343 (5) C32—N5 1.311 (5)
C14—H14 0.9300 C32—H32 0.9300
C15—C16 1.332 (5) N3—H3A 0.8600
C15—N3 1.338 (5) N6—H6 0.8600
O1—Cu1—N1 92.94 (13) C19—C18—H18 118.6
O1—Cu1—O2 175.69 (13) C17—C18—H18 118.6
N1—Cu1—O2 85.25 (12) C18—C19—C20 119.6 (4)
O1—Cu1—N2 90.51 (12) C18—C19—H19 120.2
N1—Cu1—N2 169.97 (14) C20—C19—H19 120.2
O2—Cu1—N2 91.92 (11) C21—C20—C19 119.2 (4)
O4—Cu2—N4 92.79 (13) C21—C20—H20 120.4
O4—Cu2—O5 173.64 (14) C19—C20—H20 120.4
N4—Cu2—O5 84.85 (12) C20—C21—C22 123.7 (4)
O4—Cu2—N5 90.96 (12) C20—C21—H21 118.2
N4—Cu2—N5 170.17 (14) C22—C21—H21 118.2
O5—Cu2—N5 92.32 (12) C21—C22—C17 116.6 (3)
O1—C1—C6 125.5 (4) C21—C22—C23 120.1 (3)
O1—C1—C2 116.0 (4) C17—C22—C23 123.3 (3)
C6—C1—C2 118.5 (4) N4—C23—C22 120.7 (3)
C3—C2—C1 121.8 (5) N4—C23—C26 121.5 (4)
C3—C2—H2 119.1 C22—C23—C26 117.8 (3)
C1—C2—H2 119.1 N4—C24—C25 108.3 (3)
C2—C3—C4 120.3 (5) N4—C24—C27 111.8 (3)
C2—C3—H3 119.9 C25—C24—C27 108.0 (3)
C4—C3—H3 119.9 N4—C24—H24 109.6
C5—C4—C3 118.4 (5) C25—C24—H24 109.6
C5—C4—H4 120.8 C27—C24—H24 109.6
C3—C4—H4 120.8 O6—C25—O5 124.1 (4)
C4—C5—C6 123.9 (5) O6—C25—C24 119.0 (4)
C4—C5—H5 118.0 O5—C25—C24 116.7 (4)
C6—C5—H5 118.0 C23—C26—H26A 109.5
C1—C6—C5 117.1 (4) C23—C26—H26B 109.5
C1—C6—C7 123.6 (4) H26A—C26—H26B 109.5
C5—C6—C7 119.2 (4) C23—C26—H26C 109.5
N1—C7—C6 120.6 (3) H26A—C26—H26C 109.5
N1—C7—C10 121.1 (4) H26B—C26—H26C 109.5
C6—C7—C10 118.3 (3) C29—C27—C28 109.2 (4)
N1—C8—C9 108.3 (3) C29—C27—C24 113.1 (4)
N1—C8—C11 109.5 (3) C28—C27—C24 113.6 (4)
C9—C8—C11 111.1 (4) C29—C27—H27 106.8
N1—C8—H8 109.3 C28—C27—H27 106.8
C9—C8—H8 109.3 C24—C27—H27 106.8
C11—C8—H8 109.3 C27—C28—H28A 109.5
O3—C9—O2 124.6 (4) C27—C28—H28B 109.5
O3—C9—C8 118.9 (4) H28A—C28—H28B 109.5
O2—C9—C8 116.4 (4) C27—C28—H28C 109.5
C7—C10—H10A 109.5 H28A—C28—H28C 109.5
C7—C10—H10B 109.5 H28B—C28—H28C 109.5
H10A—C10—H10B 109.5 C27—C29—H29A 109.5
C7—C10—H10C 109.5 H29A—C29—H29C 109.5
H10A—C10—H10C 109.5 H29B—C29—H29C 109.5
H10B—C10—H10C 109.5 N5—C30—N6 106.6 (4)
C13—C11—C12 111.0 (4) N5—C30—H30 126.7
C13—C11—C8 113.2 (4) N6—C30—H30 126.7
C12—C11—C8 112.8 (4) C32—C31—N6 106.9 (3)
C13—C11—H11 106.5 C32—C31—H31 126.6
C12—C11—H11 106.5 N6—C31—H31 126.6
C8—C11—H11 106.5 C31—C32—N5 113.2 (4)
C11—C12—H12A 109.5 C31—C32—H32 123.4
C11—C12—H12B 109.5 N5—C32—H32 123.4
H12A—C12—H12B 109.5 C7—N1—C8 122.4 (3)
C11—C12—H12C 109.5 C7—N1—Cu1 128.4 (3)
H12A—C12—H12C 109.5 C8—N1—Cu1 109.1 (2)
H12B—C12—H12C 109.5 C14—N2—C16 105.8 (3)
C11—C13—H13A 109.5 C14—N2—Cu1 126.6 (3)
C11—C13—H13B 109.5 C16—N2—Cu1 127.6 (3)
H13A—C13—H13B 109.5 C15—N3—C14 106.8 (3)
C11—C13—H13C 109.5 C15—N3—H3A 126.6
H13A—C13—H13C 109.5 C14—N3—H3A 126.6
H13B—C13—H13C 109.5 C23—N4—C24 124.3 (3)
N2—C14—N3 110.7 (4) C23—N4—Cu2 126.9 (3)
N2—C14—H14 124.7 C24—N4—Cu2 108.4 (2)
N3—C14—H14 124.7 C32—N5—C30 105.1 (3)
C16—C15—N3 107.5 (4) C32—N5—Cu2 128.4 (3)
C16—C15—H15 126.3 C30—N5—Cu2 125.6 (3)
N3—C15—H15 126.3 C31—N6—C30 108.3 (4)
C15—C16—N2 109.3 (4) C31—N6—H6 125.9
C15—C16—H16 125.3 C30—N6—H6 125.9
N2—C16—H16 125.3 C1—O1—Cu1 126.0 (3)
O4—C17—C18 116.5 (3) C9—O2—Cu1 113.6 (2)
O4—C17—C22 125.4 (3) C17—O4—Cu2 125.1 (2)
C18—C17—C22 118.1 (3) C25—O5—Cu2 113.4 (2)
C19—C18—C17 122.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3A···O6i 0.86 1.91 2.764 (4) 172.

Symmetry codes: (i) x−1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2627).

References

  1. Basu Baul, T. S., Masharing, C., Ruisi, G., Jirásko, R., Holčapek, M., de Vos, D., Wolstenholme, D. & Linden, A. (2007). J. Organomet. Chem.692, 4849–4862.
  2. Bruker (2000). SMART and SAINT Bruker Axs Inc., Madison, Wisconsin, USA.
  3. Casella, L. & Guillotti, M. (1983). Inorg. Chem.22, 2259–2266.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Ganguly, R., Sreenivasulu, B. & Vittal, J. J. (2008). Coord. Chem. Rev. 252, 1027–1050.
  6. Parekh, H. M., Mehta, S. R. & Patel, M. N. (2006). Russ. J. Inorg. Chem.35, 67–72.
  7. Plesch, G., Friebel, C., Warda, S. A., Sivý, J. & Švajlenová, O. (1997). Transition Met. Chem.22, 433–440.
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Usman, A., Fun, H.-K., Basu Baul, T. S. & Paul, P. C. (2003). Acta Cryst. E59, m438–m440.
  11. Vigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev.248, 1717–2128.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808028134/at2627sup1.cif

e-64-m1250-sup1.cif (25.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028134/at2627Isup2.hkl

e-64-m1250-Isup2.hkl (282.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES