Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 27;64(Pt 10):o2021. doi: 10.1107/S1600536808030481

7-Dimethyl­amino-2-phenyl-1,2,4-triazolo[1,5-a][1,3,5]triazin-5-amine methanol solvate1

Anton V Dolzhenko a,*, Geok Kheng Tan b, Lip Lin Koh b, Su Fen Woo b, Wai Keung Chui a
PMCID: PMC2959306  PMID: 21201215

Abstract

7-Dimethyl­amino-2-phenyl-1,2,4-triazolo[1,5-a][1,3,5]triazin-5-amine crystallized with one mol­ecule of methanol to give the title compound, C12H13N7·CH3OH. The triazolo[1,5-a][1,3,5]triazine heterocyclic core is essentially planar as are both amino groups that are involved in π-electron delocalization with the triazolo[1,5-a][1,3,5]triazine nucleus. The methyl groups of the dimethyl­amino fragment are involved in the formation of weak intra­molecular C—H⋯N hydrogen bonds with the N atoms of the heterocyclic system. The crystal packing is stabilized by inter­molecular N—H⋯N hydrogen bonds between the triazolo[1,5-a][1,3,5]triazine mol­ecules. The methanol solvent mol­ecule also participates in the formation of the crystal structure via inter­molecular O—H⋯N, N—H⋯O and weak C—H⋯O hydrogen bonds, linking the layers of triazolo[1,5-a][1,3,5]triazine mol­ecules.

Related literature

The 1,2,4-triazolo[1,5-a][1,3,5]triazine (5-aza­purine) heterocyclic system has been reviewed by Dolzhenko et al. (2006). For investigations on 5,7-diamino-1,2,4-triazolo[1,5-a][1,3,5]triazines, see Dolzhenko et al. (2007). For a similar structure, see: Gilardi (1973). For related literature, see: Dolzhenko et al. (2008)graphic file with name e-64-o2021-scheme1.jpg

Experimental

Crystal data

  • C12H13N7·CH4O

  • M r = 287.34

  • Triclinic, Inline graphic

  • a = 6.9963 (5) Å

  • b = 8.0435 (5) Å

  • c = 13.0942 (9) Å

  • α = 93.493 (1)°

  • β = 93.972 (1)°

  • γ = 102.883 (1)°

  • V = 714.39 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 223 (2) K

  • 0.74 × 0.68 × 0.40 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001) T min = 0.935, T max = 0.964

  • 9183 measured reflections

  • 3256 independent reflections

  • 2870 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.139

  • S = 1.07

  • 3256 reflections

  • 205 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808030481/fb2109sup1.cif

e-64-o2021-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030481/fb2109Isup2.hkl

e-64-o2021-Isup2.hkl (159.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1S—H1S⋯N1 0.92 (2) 1.97 (2) 2.8861 (16) 172.8 (18)
N6—H6NB⋯N4i 0.86 (2) 2.11 (2) 2.9679 (17) 178.8 (18)
N6—H6NA⋯O1Si 0.89 (2) 2.398 (19) 3.0280 (18) 128.3 (16)
C6—H6C⋯N2 0.97 2.08 2.8753 (18) 138
C6—H6C⋯N3 0.97 2.54 2.9484 (17) 105
C7—H7A⋯N5 0.97 2.22 2.6788 (18) 108
C7—H7C⋯O1Sii 0.97 2.48 3.4438 (19) 176

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Academic Research Fund of the National University of Singapore (WBS R-148-000-069-112) and the National Medical Research Council, Singapore (NMRC/NIG/0019/2008 and NMRC/NIG/0020/2008).

supplementary crystallographic information

Comment

1,2,4-Triazolo[1,5-a][1,3,5]triazine system is known as 5-aza-isostere of the purine core. Compounds based on this skeleton have been shown to possess a wide range of biological activities (Dolzhenko et al., 2006). In continuation of our investigations on 5,7-diamino-1,2,4-triazolo[1,5-a][1,3,5]triazines (Dolzhenko et al., 2007), we report herein the structural study of 7-dimethylamino-2-phenyl-1,2,4-triazolo[1,5-a][1,3,5]triazin-5-amine (Fig. 1).

The fused triazine and triazole rings are located practically in the same plane (the angle between the mean planes of these rings makes 1.66 (4)°). The phenyl ring makes a dihedral angle of 22.70 (5)° with the mean plane of the 1,2,4-triazolo[1,5-a][1,3,5]triazine core. Similarity of the lengths of C3—N4, C3—N5, C3—N6, C4—N3, C4—N5 and C4—N7 makes evidence for π-electron delocalization of the amino groups with the 1,2,4-triazolo[1,5-a][1,3,5]triazine core.

The dimethylamino group (C6—N7—C7) has an out-of-plane twist (4.3 (8)°). The nitrogen atom of dimethylamino group (N7) has a slightly pyramidal stereochemistry [C6-N7-C7 = 115.0 (1)°] and it is located 0.039 (1) Å above the C4/C6/C7 plane. These data are in good agreement with previously reported results on the similar structure of 5,7-bis(dimethylamino)-2-methylthio-1,2,4-triazolo[1,5-a][1,3,5]triazine (Gilardi, 1973).

The methyl groups of dimethylamino fragment are involved in the formation of weak C-H···N intramolecular hydrogen-bonds with the nitrogen atoms of the heterocyclic system (Tab. 1).

7-Dimethylamino-2-phenyl-1,2,4-triazolo[1,5-a][1,3,5]triazin-5-amine crystallizes together with one molecule of methanol (Fig. 1). The methanol molecule participates in the formation of the crystalline structure via intermolecular O-H···N, N-H···O and weak C-H···O hydrogen-bonds linking the layers of the molecules of 7-dimethylamino-2-phenyl-1,2,4-triazolo[1,5-a][1,3,5]triazin-5-amine (Tab. 1, Fig. 2).

Experimental

2-Phenyl-7-trichloromethyl-1,2,4-triazolo[1,5-a][1,3,5]triazin-5-amine (0.66 g, 2.0 mmol) was added to cold (0–5 °C) dimethylamine (5 ml). The mixture was stirred first in ice-bath for 20 min and then for another 60 min at room temperature. Cold water (20 ml) was added and the product was filtered and recrystallized from methanol (m.p. 521 K).

Refinement

All the hydrogen atoms could have been discerned in the difference electron density map, nevertheless, all the H atoms attached to the carbon atoms were constrained in a riding motion approximation [0.94 Å for Caryl-H and 0.97 Å for methyl groups; Uiso(H) = 1.2Ueq(Caryl) and Uiso(H) =1.5Ueq(Cmethyl)] while the hydroxyl and the amino H atoms were refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecules with the atomic numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing viewed along the axis c.

Crystal data

C12H13N7·CH4O Z = 2
Mr = 287.34 F(000) = 304
Triclinic, P1 Dx = 1.336 Mg m3
Hall symbol: -P 1 Melting point: 521 K
a = 6.9963 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.0435 (5) Å Cell parameters from 5236 reflections
c = 13.0942 (9) Å θ = 2.6–27.5°
α = 93.493 (1)° µ = 0.09 mm1
β = 93.972 (1)° T = 223 K
γ = 102.883 (1)° Block, colourless
V = 714.39 (8) Å3 0.74 × 0.68 × 0.40 mm

Data collection

Bruker SMART APEX CCD diffractometer 3256 independent reflections
Radiation source: fine-focus sealed tube 2870 reflections with I > 2σ(I)
graphite Rint = 0.023
φ and ω scans θmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) h = −9→9
Tmin = 0.935, Tmax = 0.964 k = −10→10
9183 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: difference Fourier map
wR(F2) = 0.139 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0789P)2 + 0.1582P] where P = (Fo2 + 2Fc2)/3
3256 reflections (Δ/σ)max < 0.001
205 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.23 e Å3
53 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.81509 (16) 0.63570 (13) 0.67882 (8) 0.0325 (3)
N2 0.66405 (16) 0.37327 (13) 0.60113 (8) 0.0322 (3)
N3 0.73812 (15) 0.48432 (13) 0.52921 (8) 0.0296 (2)
N4 0.90611 (16) 0.77645 (13) 0.52784 (9) 0.0343 (3)
N5 0.81734 (16) 0.59004 (13) 0.37296 (8) 0.0327 (3)
N6 0.9623 (2) 0.87296 (16) 0.36975 (11) 0.0432 (3)
H6NA 0.954 (3) 0.859 (2) 0.3018 (16) 0.053 (5)*
H6NB 1.001 (3) 0.975 (3) 0.3987 (15) 0.055 (5)*
N7 0.65525 (16) 0.30863 (13) 0.37239 (8) 0.0343 (3)
C1 0.71566 (17) 0.47092 (16) 0.68750 (10) 0.0309 (3)
C2 0.82710 (17) 0.64251 (15) 0.57841 (10) 0.0304 (3)
C3 0.89340 (18) 0.74312 (16) 0.42567 (10) 0.0330 (3)
C4 0.73645 (17) 0.45873 (15) 0.42375 (10) 0.0291 (3)
C6 0.5786 (2) 0.14747 (17) 0.41673 (12) 0.0439 (3)
H6A 0.6609 0.0681 0.4018 0.066*
H6B 0.4452 0.0991 0.3874 0.066*
H6C 0.5789 0.1681 0.4905 0.066*
C7 0.6562 (2) 0.29631 (19) 0.26060 (11) 0.0428 (3)
H7A 0.6950 0.4101 0.2371 0.064*
H7B 0.5255 0.2413 0.2299 0.064*
H7C 0.7489 0.2293 0.2406 0.064*
C8 0.66609 (18) 0.40434 (16) 0.78684 (10) 0.0333 (3)
C9 0.7706 (2) 0.4838 (2) 0.87779 (11) 0.0431 (3)
H9 0.8728 0.5815 0.8760 0.052*
C10 0.7244 (3) 0.4193 (2) 0.97062 (12) 0.0517 (4)
H10 0.7960 0.4728 1.0318 0.062*
C11 0.5733 (3) 0.2762 (2) 0.97403 (12) 0.0512 (4)
H11 0.5433 0.2323 1.0374 0.061*
C12 0.4663 (2) 0.1978 (2) 0.88451 (12) 0.0456 (4)
H12 0.3624 0.1016 0.8870 0.055*
C13 0.5127 (2) 0.26140 (17) 0.79114 (11) 0.0386 (3)
H13 0.4402 0.2078 0.7302 0.046*
O1S 1.00567 (17) 0.92566 (15) 0.81876 (10) 0.0530 (3)
H1S 0.936 (3) 0.838 (3) 0.7737 (16) 0.061 (6)*
C1S 0.8695 (3) 0.9935 (3) 0.86937 (19) 0.0739 (6)
H1S1 0.8051 0.9119 0.9148 0.111*
H1S2 0.7720 1.0174 0.8195 0.111*
H1S3 0.9360 1.0986 0.9092 0.111*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0333 (5) 0.0275 (5) 0.0349 (6) 0.0040 (4) 0.0007 (4) 0.0013 (4)
N2 0.0341 (5) 0.0271 (5) 0.0341 (5) 0.0038 (4) 0.0024 (4) 0.0047 (4)
N3 0.0296 (5) 0.0238 (5) 0.0336 (5) 0.0028 (4) 0.0011 (4) 0.0019 (4)
N4 0.0364 (6) 0.0256 (5) 0.0383 (6) 0.0017 (4) 0.0027 (4) 0.0021 (4)
N5 0.0333 (5) 0.0287 (5) 0.0353 (6) 0.0054 (4) 0.0039 (4) 0.0019 (4)
N6 0.0550 (8) 0.0304 (6) 0.0409 (7) 0.0007 (5) 0.0081 (5) 0.0054 (5)
N7 0.0370 (6) 0.0277 (5) 0.0355 (6) 0.0036 (4) 0.0005 (4) −0.0014 (4)
C1 0.0279 (6) 0.0288 (6) 0.0356 (6) 0.0056 (4) 0.0009 (5) 0.0032 (5)
C2 0.0279 (6) 0.0249 (6) 0.0370 (6) 0.0048 (4) −0.0005 (5) −0.0006 (5)
C3 0.0302 (6) 0.0286 (6) 0.0402 (7) 0.0059 (5) 0.0042 (5) 0.0041 (5)
C4 0.0253 (5) 0.0280 (6) 0.0339 (6) 0.0068 (4) 0.0009 (4) 0.0008 (5)
C6 0.0527 (8) 0.0260 (6) 0.0473 (8) −0.0013 (6) 0.0026 (6) −0.0023 (5)
C7 0.0503 (8) 0.0391 (7) 0.0357 (7) 0.0062 (6) 0.0021 (6) −0.0066 (5)
C8 0.0330 (6) 0.0326 (6) 0.0348 (7) 0.0081 (5) 0.0020 (5) 0.0042 (5)
C9 0.0414 (7) 0.0436 (7) 0.0394 (7) 0.0010 (6) −0.0008 (6) 0.0031 (6)
C10 0.0558 (9) 0.0599 (10) 0.0340 (7) 0.0036 (7) −0.0015 (6) 0.0021 (6)
C11 0.0560 (9) 0.0599 (10) 0.0368 (7) 0.0074 (7) 0.0106 (6) 0.0109 (7)
C12 0.0446 (8) 0.0442 (8) 0.0462 (8) 0.0029 (6) 0.0098 (6) 0.0095 (6)
C13 0.0394 (7) 0.0355 (7) 0.0388 (7) 0.0046 (5) 0.0017 (5) 0.0034 (5)
O1S 0.0485 (6) 0.0470 (6) 0.0569 (7) −0.0004 (5) 0.0067 (5) −0.0090 (5)
C1S 0.0679 (12) 0.0663 (12) 0.0864 (14) 0.0126 (10) 0.0233 (11) −0.0111 (11)

Geometric parameters (Å, °)

N1—C2 1.3269 (17) C7—H7A 0.9700
N1—C1 1.3681 (16) C7—H7B 0.9700
N2—C1 1.3172 (17) C7—H7C 0.9700
N2—N3 1.3846 (14) C8—C9 1.393 (2)
N3—C4 1.3826 (16) C8—C13 1.3939 (19)
N3—C2 1.3830 (15) C9—C10 1.381 (2)
N4—C2 1.3330 (16) C9—H9 0.9400
N4—C3 1.3412 (18) C10—C11 1.384 (2)
N5—C4 1.3226 (16) C10—H10 0.9400
N5—C3 1.3524 (16) C11—C12 1.382 (2)
N6—C3 1.3330 (17) C11—H11 0.9400
N6—H6NA 0.89 (2) C12—C13 1.385 (2)
N6—H6NB 0.86 (2) C12—H12 0.9400
N7—C4 1.3323 (16) C13—H13 0.9400
N7—C6 1.4594 (17) O1S—C1S 1.386 (2)
N7—C7 1.4617 (18) O1S—H1S 0.92 (2)
C1—C8 1.4709 (18) C1S—H1S1 0.9700
C6—H6A 0.9700 C1S—H1S2 0.9700
C6—H6B 0.9700 C1S—H1S3 0.9700
C6—H6C 0.9700
C2—N1—C1 103.31 (10) N7—C7—H7A 109.5
C1—N2—N3 101.79 (10) N7—C7—H7B 109.5
C4—N3—C2 119.85 (11) H7A—C7—H7B 109.5
C4—N3—N2 130.72 (10) N7—C7—H7C 109.5
C2—N3—N2 109.43 (10) H7A—C7—H7C 109.5
C2—N4—C3 113.98 (11) H7B—C7—H7C 109.5
C4—N5—C3 118.92 (11) C9—C8—C13 119.13 (13)
C3—N6—H6NA 121.0 (13) C9—C8—C1 120.54 (12)
C3—N6—H6NB 120.1 (13) C13—C8—C1 120.33 (12)
H6NA—N6—H6NB 118.3 (18) C10—C9—C8 120.14 (14)
C4—N7—C6 126.56 (12) C10—C9—H9 119.9
C4—N7—C7 118.21 (11) C8—C9—H9 119.9
C6—N7—C7 115.01 (11) C9—C10—C11 120.31 (15)
N2—C1—N1 116.27 (11) C9—C10—H10 119.8
N2—C1—C8 121.01 (11) C11—C10—H10 119.8
N1—C1—C8 122.72 (12) C12—C11—C10 120.14 (14)
N1—C2—N4 128.12 (11) C12—C11—H11 119.9
N1—C2—N3 109.21 (11) C10—C11—H11 119.9
N4—C2—N3 122.66 (12) C11—C12—C13 119.79 (14)
N6—C3—N4 117.28 (12) C11—C12—H12 120.1
N6—C3—N5 116.20 (13) C13—C12—H12 120.1
N4—C3—N5 126.52 (12) C12—C13—C8 120.48 (13)
N5—C4—N7 119.54 (12) C12—C13—H13 119.8
N5—C4—N3 117.96 (11) C8—C13—H13 119.8
N7—C4—N3 122.50 (12) C1S—O1S—H1S 107.0 (13)
N7—C6—H6A 109.5 O1S—C1S—H1S1 109.5
N7—C6—H6B 109.5 O1S—C1S—H1S2 109.5
H6A—C6—H6B 109.5 H1S1—C1S—H1S2 109.5
N7—C6—H6C 109.5 O1S—C1S—H1S3 109.5
H6A—C6—H6C 109.5 H1S1—C1S—H1S3 109.5
H6B—C6—H6C 109.5 H1S2—C1S—H1S3 109.5
C1—N2—N3—C4 178.41 (12) C6—N7—C4—N5 173.18 (12)
C1—N2—N3—C2 −0.83 (12) C7—N7—C4—N5 −1.02 (18)
N3—N2—C1—N1 0.51 (14) C6—N7—C4—N3 −7.5 (2)
N3—N2—C1—C8 179.98 (10) C7—N7—C4—N3 178.25 (11)
C2—N1—C1—N2 0.03 (14) C2—N3—C4—N5 −1.60 (17)
C2—N1—C1—C8 −179.44 (11) N2—N3—C4—N5 179.22 (11)
C1—N1—C2—N4 178.09 (12) C2—N3—C4—N7 179.11 (11)
C1—N1—C2—N3 −0.57 (13) N2—N3—C4—N7 −0.1 (2)
C3—N4—C2—N1 −179.24 (12) N2—C1—C8—C9 159.09 (13)
C3—N4—C2—N3 −0.74 (18) N1—C1—C8—C9 −21.47 (19)
C4—N3—C2—N1 −178.42 (10) N2—C1—C8—C13 −21.37 (18)
N2—N3—C2—N1 0.92 (13) N1—C1—C8—C13 158.07 (12)
C4—N3—C2—N4 2.83 (18) C13—C8—C9—C10 1.2 (2)
N2—N3—C2—N4 −177.83 (11) C1—C8—C9—C10 −179.30 (14)
C2—N4—C3—N6 177.38 (11) C8—C9—C10—C11 −0.5 (3)
C2—N4—C3—N5 −2.68 (19) C9—C10—C11—C12 −0.6 (3)
C4—N5—C3—N6 −176.15 (11) C10—C11—C12—C13 0.9 (3)
C4—N5—C3—N4 3.9 (2) C11—C12—C13—C8 −0.2 (2)
C3—N5—C4—N7 177.83 (11) C9—C8—C13—C12 −0.8 (2)
C3—N5—C4—N3 −1.48 (17) C1—C8—C13—C12 179.66 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1S—H1S···N1 0.92 (2) 1.97 (2) 2.8861 (16) 172.8 (18)
N6—H6NB···N4i 0.86 (2) 2.11 (2) 2.9679 (17) 178.8 (18)
N6—H6NA···O1Si 0.89 (2) 2.398 (19) 3.0280 (18) 128.3 (16)
C6—H6C···N2 0.97 2.08 2.8753 (18) 138.
C6—H6C···N3 0.97 2.54 2.9484 (17) 105.
C7—H7A···N5 0.97 2.22 2.6788 (18) 108.
C7—H7C···O1Sii 0.97 2.48 3.4438 (19) 176.

Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+2, −y+1, −z+1.

Footnotes

1

Part 11 in the series ‘Fused heterocyclic systems with an s-triazine ring’. For Part 10, see Dolzhenko et al. (2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2109).

References

  1. Bruker (2001). SMART and SAINT Bruker AXS GmbH, Karlsruhe, Germany.
  2. Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2006). Heterocycles, 68, 1723–1759.
  3. Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2007). Heterocycles, 71, 429–436.
  4. Dolzhenko, A. V., Tan, B. J., Dolzhenko, A. V., Chiu, G. N. C. & Chui, W. K. (2008). J. Fluorine Chem.129, 429–434.
  5. Gilardi, R. D. (1973). Acta Cryst. B29, 2089–2095.
  6. Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808030481/fb2109sup1.cif

e-64-o2021-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030481/fb2109Isup2.hkl

e-64-o2021-Isup2.hkl (159.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES