Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 24;64(Pt 10):o1998. doi: 10.1107/S1600536808030079

3-Phenyl-2-thioxo-1,3-thia­zolidin-4-one

Feng-Xia Zhu a,*, Jian-Feng Zhou a, Gui-Xia Gong b
PMCID: PMC2959314  PMID: 21201196

Abstract

In the mol­ecule of the title compound, C9H7NOS2, the heterocycle and the phenyl ring are oriented at a dihedral angle of 72.3 (1)°. Adjacent mol­ecules are connected through C—H⋯O inter­actions.

Related literature

For the synthesis of 3-phenyl­rhodanine, see: Brown et al. (1956). For the therapeutic properties of rhodanine-based mol­ecules, including anti­convulsant, anti­bacterial, anti­viral and anti­diabetic properties, see: Momose et al. (1991); HCV protease, Sudo et al. (1997); HCV NS3 protease, Sing et al. (2001); aldols reductase, Bruno et al. (2002); factor protease, Sherida et al. (2006).graphic file with name e-64-o1998-scheme1.jpg

Experimental

Crystal data

  • C9H7NOS2

  • M r = 209.28

  • Monoclinic, Inline graphic

  • a = 12.9941 (13) Å

  • b = 5.6111 (6) Å

  • c = 12.7271 (13) Å

  • β = 93.847 (3)°

  • V = 925.86 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 296 (2) K

  • 0.20 × 0.15 × 0.05 mm

Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.91, T max = 0.97

  • 10918 measured reflections

  • 1800 independent reflections

  • 1146 reflections with I > 2σ(I)

  • R int = 0.066

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.080

  • S = 1.00

  • 1800 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808030079/pk2120sup1.cif

e-64-o1998-sup1.cif (14KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030079/pk2120Isup2.hkl

e-64-o1998-Isup2.hkl (88.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.51 3.410 (3) 163
C8—H8⋯O1ii 0.93 2.46 3.386 (3) 171

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Rhodanine derivatives are attractive compounds owing to their outstanding biological activities. They have undergone rapid development as a result of their use in anticonvulsant, antibacterial, antiviral and antidiabetic treatments (Momose et al., 1991). As an extension of these studies, we report herein on the structure of 3-phenylrhodanine (3-phenyl-2-thioxothiazolidin-4-one).

A 3-phenylrhodanine molecule, which is the asymmetric unit of the structure, is shown in Fig. 1. All the bond distances and bond angles are within the normal ranges. The two parts of the molecule, the five-member heterocycle and the phenyl ring, are oriented at a dihedral angle of 72.3 (1)°. Adjacent molecules are connected through C–H—O hydrogen bonds (Table 1).

Experimental

3-phenylrhodanine was synthesized according to the literature (Brown et al., 1956), and was recrystallized using a mixed solvent of ether and 95% ethanol (1:1 by volume). Yellow sheet crystals are obtained.

Refinement

All non-hydrogen atoms were found in Fourier maps, and were refined anisotropically. Hydrogen atoms were positioned geometrically, and the isotropic vibration parameters related to the atoms which they are bonded to with Uiso = 1.2 Ueq.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of 3-benzylrhodanine with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Crystal data

C9H7NOS2 F(000) = 432
Mr = 209.28 Dx = 1.501 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1321 reflections
a = 12.9941 (13) Å θ = 3.1–21.1°
b = 5.6111 (6) Å µ = 0.53 mm1
c = 12.7271 (13) Å T = 296 K
β = 93.847 (3)° Plate, yellow
V = 925.86 (17) Å3 0.20 × 0.15 × 0.05 mm
Z = 4

Data collection

Bruker APEXII diffractometer 1800 independent reflections
Radiation source: fine-focus sealed tube 1146 reflections with I > 2σ(I)
graphite Rint = 0.066
Detector resolution: 8 pixels mm-1 θmax = 26.0°, θmin = 1.6°
ω scans h = −14→15
Absorption correction: multi-scan (SADABS; Bruker, 2000) k = −6→6
Tmin = 0.91, Tmax = 0.97 l = −15→15
10918 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0272P)2 + 0.2182P] where P = (Fo2 + 2Fc2)/3
1800 reflections (Δ/σ)max < 0.001
118 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.35704 (19) 0.8242 (4) 0.64373 (18) 0.0412 (6)
C2 0.2485 (2) 0.5060 (4) 0.58348 (17) 0.0413 (6)
C3 0.32529 (19) 0.5020 (4) 0.50099 (19) 0.0495 (7)
H3A 0.2908 0.5231 0.4317 0.059*
H3B 0.3616 0.3508 0.5024 0.059*
C4 0.20680 (17) 0.7118 (4) 0.74476 (17) 0.0351 (6)
C5 0.13898 (18) 0.8984 (4) 0.74630 (18) 0.0433 (6)
H5 0.1376 1.0140 0.6938 0.052*
C6 0.07285 (19) 0.9134 (5) 0.8263 (2) 0.0478 (7)
H6 0.0262 1.0389 0.8275 0.057*
C7 0.0756 (2) 0.7437 (5) 0.90434 (19) 0.0484 (7)
H7 0.0309 0.7549 0.9582 0.058*
C8 0.1438 (2) 0.5586 (5) 0.90295 (19) 0.0512 (7)
H8 0.1455 0.4441 0.9559 0.061*
C9 0.21025 (19) 0.5414 (4) 0.82277 (18) 0.0444 (6)
H9 0.2569 0.4158 0.8216 0.053*
N1 0.27190 (14) 0.6844 (3) 0.65849 (14) 0.0364 (5)
O1 0.17588 (14) 0.3754 (3) 0.58706 (13) 0.0541 (5)
S1 0.41400 (5) 0.74161 (13) 0.52991 (6) 0.0566 (2)
S2 0.40143 (5) 1.03944 (13) 0.71931 (6) 0.0583 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0359 (15) 0.0436 (15) 0.0446 (14) 0.0026 (12) 0.0059 (11) 0.0053 (12)
C2 0.0456 (16) 0.0411 (15) 0.0378 (13) 0.0024 (13) 0.0066 (12) 0.0023 (12)
C3 0.0501 (16) 0.0522 (17) 0.0475 (14) 0.0041 (14) 0.0124 (12) −0.0048 (13)
C4 0.0342 (14) 0.0356 (14) 0.0362 (12) −0.0006 (11) 0.0077 (11) −0.0010 (11)
C5 0.0440 (16) 0.0407 (15) 0.0458 (15) 0.0024 (13) 0.0069 (13) 0.0055 (11)
C6 0.0403 (16) 0.0461 (16) 0.0577 (16) 0.0089 (13) 0.0089 (13) −0.0033 (13)
C7 0.0474 (16) 0.0539 (17) 0.0458 (14) −0.0049 (15) 0.0182 (12) −0.0063 (14)
C8 0.0614 (18) 0.0489 (16) 0.0445 (15) −0.0046 (15) 0.0125 (14) 0.0097 (13)
C9 0.0497 (16) 0.0370 (14) 0.0472 (14) 0.0093 (12) 0.0090 (12) 0.0044 (12)
N1 0.0359 (12) 0.0356 (11) 0.0386 (11) −0.0007 (9) 0.0088 (9) −0.0003 (9)
O1 0.0594 (13) 0.0506 (11) 0.0532 (11) −0.0147 (10) 0.0107 (9) −0.0059 (9)
S1 0.0465 (4) 0.0673 (5) 0.0588 (4) −0.0072 (4) 0.0228 (3) −0.0061 (4)
S2 0.0511 (5) 0.0561 (5) 0.0682 (5) −0.0128 (4) 0.0081 (4) −0.0131 (4)

Geometric parameters (Å, °)

C1—N1 1.379 (3) C4—N1 1.439 (3)
C1—S2 1.626 (3) C5—C6 1.378 (3)
C1—S1 1.733 (2) C5—H5 0.9300
C2—O1 1.198 (3) C6—C7 1.375 (3)
C2—N1 1.402 (3) C6—H6 0.9300
C2—C3 1.496 (3) C7—C8 1.366 (3)
C3—S1 1.793 (3) C7—H7 0.9300
C3—H3A 0.9700 C8—C9 1.384 (3)
C3—H3B 0.9700 C8—H8 0.9300
C4—C5 1.370 (3) C9—H9 0.9300
C4—C9 1.377 (3)
N1—C1—S2 126.73 (18) C6—C5—H5 120.3
N1—C1—S1 110.68 (17) C7—C6—C5 120.3 (2)
S2—C1—S1 122.59 (15) C7—C6—H6 119.9
O1—C2—N1 123.1 (2) C5—C6—H6 119.9
O1—C2—C3 125.5 (2) C8—C7—C6 120.2 (2)
N1—C2—C3 111.4 (2) C8—C7—H7 119.9
C2—C3—S1 107.11 (17) C6—C7—H7 119.9
C2—C3—H3A 110.3 C7—C8—C9 120.0 (2)
S1—C3—H3A 110.3 C7—C8—H8 120.0
C2—C3—H3B 110.3 C9—C8—H8 120.0
S1—C3—H3B 110.3 C4—C9—C8 119.5 (2)
H3A—C3—H3B 108.5 C4—C9—H9 120.3
C5—C4—C9 120.7 (2) C8—C9—H9 120.3
C5—C4—N1 120.3 (2) C1—N1—C2 116.9 (2)
C9—C4—N1 118.9 (2) C1—N1—C4 124.14 (19)
C4—C5—C6 119.4 (2) C2—N1—C4 119.0 (2)
C4—C5—H5 120.3 C1—S1—C3 93.86 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5···O1i 0.93 2.51 3.410 (3) 163.
C8—H8···O1ii 0.93 2.46 3.386 (3) 171.

Symmetry codes: (i) x, y+1, z; (ii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2120).

References

  1. Brown, F. C., Bradsher, C. K., Morgan, E. C., Tetenbaum, M. & Wilder, P. (1956). J. Am. Chem. Soc., 78, 384–388.
  2. Bruker (2000). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin,USA.
  4. Bruno, G., Costantino, L., Curinga, C., Maccari, R., Monforte, F., Nicolo, F., Ottana, R. & Vigorita, M. G. (2002). Bioorg. Med. Chem.10, 1077–1084. [DOI] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Momose, Y., Meguro, K., Ikeda, H., Hatanaka, C., Oi, S. & Sohda, T. (1991). Chem. Pharm. Bull.39, 1440–1445. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sherida, L., Jung, J. D. & Forino, M. (2006). J. Med. Chem.49, 27–30. [DOI] [PMC free article] [PubMed]
  9. Sing, W. T., Lee, C. L., Yeo, S. L., Lim, S. P. & Sim, M. M. (2001). Bioorg. Med. Chem. Lett.11, 91–94. [DOI] [PubMed]
  10. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  11. Sudo, K., Matsumoto, Y., Matsushima, M., Fujiwara, M., Konno, K., Shimotohno, K., Shigeta, S. & Yokota, T. (1997). Biochem. Biophys. Res. Commun.238, 643–647. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808030079/pk2120sup1.cif

e-64-o1998-sup1.cif (14KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030079/pk2120Isup2.hkl

e-64-o1998-Isup2.hkl (88.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES