Abstract
In the molecule of the title compound, C9H7NOS2, the heterocycle and the phenyl ring are oriented at a dihedral angle of 72.3 (1)°. Adjacent molecules are connected through C—H⋯O interactions.
Related literature
For the synthesis of 3-phenylrhodanine, see: Brown et al. (1956 ▶). For the therapeutic properties of rhodanine-based molecules, including anticonvulsant, antibacterial, antiviral and antidiabetic properties, see: Momose et al. (1991 ▶); HCV protease, Sudo et al. (1997 ▶); HCV NS3 protease, Sing et al. (2001 ▶); aldols reductase, Bruno et al. (2002 ▶); factor protease, Sherida et al. (2006 ▶).
Experimental
Crystal data
C9H7NOS2
M r = 209.28
Monoclinic,
a = 12.9941 (13) Å
b = 5.6111 (6) Å
c = 12.7271 (13) Å
β = 93.847 (3)°
V = 925.86 (17) Å3
Z = 4
Mo Kα radiation
μ = 0.53 mm−1
T = 296 (2) K
0.20 × 0.15 × 0.05 mm
Data collection
Bruker APEXII diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000 ▶) T min = 0.91, T max = 0.97
10918 measured reflections
1800 independent reflections
1146 reflections with I > 2σ(I)
R int = 0.066
Refinement
R[F 2 > 2σ(F 2)] = 0.040
wR(F 2) = 0.080
S = 1.00
1800 reflections
118 parameters
H-atom parameters constrained
Δρmax = 0.25 e Å−3
Δρmin = −0.23 e Å−3
Data collection: APEX2 (Bruker, 2004 ▶); cell refinement: SAINT (Bruker, 2004 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808030079/pk2120sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030079/pk2120Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
C5—H5⋯O1i | 0.93 | 2.51 | 3.410 (3) | 163 |
C8—H8⋯O1ii | 0.93 | 2.46 | 3.386 (3) | 171 |
Symmetry codes: (i) ; (ii)
.
supplementary crystallographic information
Comment
Rhodanine derivatives are attractive compounds owing to their outstanding biological activities. They have undergone rapid development as a result of their use in anticonvulsant, antibacterial, antiviral and antidiabetic treatments (Momose et al., 1991). As an extension of these studies, we report herein on the structure of 3-phenylrhodanine (3-phenyl-2-thioxothiazolidin-4-one).
A 3-phenylrhodanine molecule, which is the asymmetric unit of the structure, is shown in Fig. 1. All the bond distances and bond angles are within the normal ranges. The two parts of the molecule, the five-member heterocycle and the phenyl ring, are oriented at a dihedral angle of 72.3 (1)°. Adjacent molecules are connected through C–H—O hydrogen bonds (Table 1).
Experimental
3-phenylrhodanine was synthesized according to the literature (Brown et al., 1956), and was recrystallized using a mixed solvent of ether and 95% ethanol (1:1 by volume). Yellow sheet crystals are obtained.
Refinement
All non-hydrogen atoms were found in Fourier maps, and were refined anisotropically. Hydrogen atoms were positioned geometrically, and the isotropic vibration parameters related to the atoms which they are bonded to with Uiso = 1.2 Ueq.
Figures
Fig. 1.
The asymmetric unit of 3-benzylrhodanine with atom labels and 50% probability displacement ellipsoids for non-H atoms.
Crystal data
C9H7NOS2 | F(000) = 432 |
Mr = 209.28 | Dx = 1.501 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1321 reflections |
a = 12.9941 (13) Å | θ = 3.1–21.1° |
b = 5.6111 (6) Å | µ = 0.53 mm−1 |
c = 12.7271 (13) Å | T = 296 K |
β = 93.847 (3)° | Plate, yellow |
V = 925.86 (17) Å3 | 0.20 × 0.15 × 0.05 mm |
Z = 4 |
Data collection
Bruker APEXII diffractometer | 1800 independent reflections |
Radiation source: fine-focus sealed tube | 1146 reflections with I > 2σ(I) |
graphite | Rint = 0.066 |
Detector resolution: 8 pixels mm-1 | θmax = 26.0°, θmin = 1.6° |
ω scans | h = −14→15 |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | k = −6→6 |
Tmin = 0.91, Tmax = 0.97 | l = −15→15 |
10918 measured reflections |
Refinement
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0272P)2 + 0.2182P] where P = (Fo2 + 2Fc2)/3 |
1800 reflections | (Δ/σ)max < 0.001 |
118 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
C1 | 0.35704 (19) | 0.8242 (4) | 0.64373 (18) | 0.0412 (6) | |
C2 | 0.2485 (2) | 0.5060 (4) | 0.58348 (17) | 0.0413 (6) | |
C3 | 0.32529 (19) | 0.5020 (4) | 0.50099 (19) | 0.0495 (7) | |
H3A | 0.2908 | 0.5231 | 0.4317 | 0.059* | |
H3B | 0.3616 | 0.3508 | 0.5024 | 0.059* | |
C4 | 0.20680 (17) | 0.7118 (4) | 0.74476 (17) | 0.0351 (6) | |
C5 | 0.13898 (18) | 0.8984 (4) | 0.74630 (18) | 0.0433 (6) | |
H5 | 0.1376 | 1.0140 | 0.6938 | 0.052* | |
C6 | 0.07285 (19) | 0.9134 (5) | 0.8263 (2) | 0.0478 (7) | |
H6 | 0.0262 | 1.0389 | 0.8275 | 0.057* | |
C7 | 0.0756 (2) | 0.7437 (5) | 0.90434 (19) | 0.0484 (7) | |
H7 | 0.0309 | 0.7549 | 0.9582 | 0.058* | |
C8 | 0.1438 (2) | 0.5586 (5) | 0.90295 (19) | 0.0512 (7) | |
H8 | 0.1455 | 0.4441 | 0.9559 | 0.061* | |
C9 | 0.21025 (19) | 0.5414 (4) | 0.82277 (18) | 0.0444 (6) | |
H9 | 0.2569 | 0.4158 | 0.8216 | 0.053* | |
N1 | 0.27190 (14) | 0.6844 (3) | 0.65849 (14) | 0.0364 (5) | |
O1 | 0.17588 (14) | 0.3754 (3) | 0.58706 (13) | 0.0541 (5) | |
S1 | 0.41400 (5) | 0.74161 (13) | 0.52991 (6) | 0.0566 (2) | |
S2 | 0.40143 (5) | 1.03944 (13) | 0.71931 (6) | 0.0583 (2) |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0359 (15) | 0.0436 (15) | 0.0446 (14) | 0.0026 (12) | 0.0059 (11) | 0.0053 (12) |
C2 | 0.0456 (16) | 0.0411 (15) | 0.0378 (13) | 0.0024 (13) | 0.0066 (12) | 0.0023 (12) |
C3 | 0.0501 (16) | 0.0522 (17) | 0.0475 (14) | 0.0041 (14) | 0.0124 (12) | −0.0048 (13) |
C4 | 0.0342 (14) | 0.0356 (14) | 0.0362 (12) | −0.0006 (11) | 0.0077 (11) | −0.0010 (11) |
C5 | 0.0440 (16) | 0.0407 (15) | 0.0458 (15) | 0.0024 (13) | 0.0069 (13) | 0.0055 (11) |
C6 | 0.0403 (16) | 0.0461 (16) | 0.0577 (16) | 0.0089 (13) | 0.0089 (13) | −0.0033 (13) |
C7 | 0.0474 (16) | 0.0539 (17) | 0.0458 (14) | −0.0049 (15) | 0.0182 (12) | −0.0063 (14) |
C8 | 0.0614 (18) | 0.0489 (16) | 0.0445 (15) | −0.0046 (15) | 0.0125 (14) | 0.0097 (13) |
C9 | 0.0497 (16) | 0.0370 (14) | 0.0472 (14) | 0.0093 (12) | 0.0090 (12) | 0.0044 (12) |
N1 | 0.0359 (12) | 0.0356 (11) | 0.0386 (11) | −0.0007 (9) | 0.0088 (9) | −0.0003 (9) |
O1 | 0.0594 (13) | 0.0506 (11) | 0.0532 (11) | −0.0147 (10) | 0.0107 (9) | −0.0059 (9) |
S1 | 0.0465 (4) | 0.0673 (5) | 0.0588 (4) | −0.0072 (4) | 0.0228 (3) | −0.0061 (4) |
S2 | 0.0511 (5) | 0.0561 (5) | 0.0682 (5) | −0.0128 (4) | 0.0081 (4) | −0.0131 (4) |
Geometric parameters (Å, °)
C1—N1 | 1.379 (3) | C4—N1 | 1.439 (3) |
C1—S2 | 1.626 (3) | C5—C6 | 1.378 (3) |
C1—S1 | 1.733 (2) | C5—H5 | 0.9300 |
C2—O1 | 1.198 (3) | C6—C7 | 1.375 (3) |
C2—N1 | 1.402 (3) | C6—H6 | 0.9300 |
C2—C3 | 1.496 (3) | C7—C8 | 1.366 (3) |
C3—S1 | 1.793 (3) | C7—H7 | 0.9300 |
C3—H3A | 0.9700 | C8—C9 | 1.384 (3) |
C3—H3B | 0.9700 | C8—H8 | 0.9300 |
C4—C5 | 1.370 (3) | C9—H9 | 0.9300 |
C4—C9 | 1.377 (3) | ||
N1—C1—S2 | 126.73 (18) | C6—C5—H5 | 120.3 |
N1—C1—S1 | 110.68 (17) | C7—C6—C5 | 120.3 (2) |
S2—C1—S1 | 122.59 (15) | C7—C6—H6 | 119.9 |
O1—C2—N1 | 123.1 (2) | C5—C6—H6 | 119.9 |
O1—C2—C3 | 125.5 (2) | C8—C7—C6 | 120.2 (2) |
N1—C2—C3 | 111.4 (2) | C8—C7—H7 | 119.9 |
C2—C3—S1 | 107.11 (17) | C6—C7—H7 | 119.9 |
C2—C3—H3A | 110.3 | C7—C8—C9 | 120.0 (2) |
S1—C3—H3A | 110.3 | C7—C8—H8 | 120.0 |
C2—C3—H3B | 110.3 | C9—C8—H8 | 120.0 |
S1—C3—H3B | 110.3 | C4—C9—C8 | 119.5 (2) |
H3A—C3—H3B | 108.5 | C4—C9—H9 | 120.3 |
C5—C4—C9 | 120.7 (2) | C8—C9—H9 | 120.3 |
C5—C4—N1 | 120.3 (2) | C1—N1—C2 | 116.9 (2) |
C9—C4—N1 | 118.9 (2) | C1—N1—C4 | 124.14 (19) |
C4—C5—C6 | 119.4 (2) | C2—N1—C4 | 119.0 (2) |
C4—C5—H5 | 120.3 | C1—S1—C3 | 93.86 (12) |
Hydrogen-bond geometry (Å, °)
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O1i | 0.93 | 2.51 | 3.410 (3) | 163. |
C8—H8···O1ii | 0.93 | 2.46 | 3.386 (3) | 171. |
Symmetry codes: (i) x, y+1, z; (ii) x, −y+1/2, z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2120).
References
- Brown, F. C., Bradsher, C. K., Morgan, E. C., Tetenbaum, M. & Wilder, P. (1956). J. Am. Chem. Soc., 78, 384–388.
- Bruker (2000). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin,USA.
- Bruno, G., Costantino, L., Curinga, C., Maccari, R., Monforte, F., Nicolo, F., Ottana, R. & Vigorita, M. G. (2002). Bioorg. Med. Chem.10, 1077–1084. [DOI] [PubMed]
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Momose, Y., Meguro, K., Ikeda, H., Hatanaka, C., Oi, S. & Sohda, T. (1991). Chem. Pharm. Bull.39, 1440–1445. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sherida, L., Jung, J. D. & Forino, M. (2006). J. Med. Chem.49, 27–30. [DOI] [PMC free article] [PubMed]
- Sing, W. T., Lee, C. L., Yeo, S. L., Lim, S. P. & Sim, M. M. (2001). Bioorg. Med. Chem. Lett.11, 91–94. [DOI] [PubMed]
- Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
- Sudo, K., Matsumoto, Y., Matsushima, M., Fujiwara, M., Konno, K., Shimotohno, K., Shigeta, S. & Yokota, T. (1997). Biochem. Biophys. Res. Commun.238, 643–647. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808030079/pk2120sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030079/pk2120Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report