Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 13;64(Pt 10):o1931. doi: 10.1107/S1600536808028833

Redermination of 9,9′-bianthracene-10,10′(9H,9′H)-dione

Zhi-Gang Wen a,*, Jia-Ming Li b
PMCID: PMC2959320  PMID: 21201139

Abstract

The crystal structure of the title compound, C28H18O2, was originally determined by Ehrenberg [(1967). Acta Cryst. 22, 482–487] using intensity data obtained from Weissenberg photographs. The current determination provides a crystal and mol­ecular structure with a significantly higher precision and presents standard uncertainties on geometric parameters which are not available from the original work. The mol­ecule lies on a crystallographic twofold rotation axis which bis­ects the C—C bond [1.603 (3) Å] which joins the two anthracen-9(10H)-one units.

Related literature

For general background, see: Li et al. (2002); Shi et al. (2004); Müller et al. (1996, 1998, 2001); Prinz, Burgemeister & Wiegrebe (1996); Prinz, Wiegrebe & Müller (1996). For related structures, see: Ehrenberg (1967).graphic file with name e-64-o1931-scheme1.jpg

Experimental

Crystal data

  • C28H18O2

  • M r = 386.42

  • Monoclinic, Inline graphic

  • a = 22.295 (4) Å

  • b = 7.7297 (12) Å

  • c = 13.643 (2) Å

  • β = 126.768 (2)°

  • V = 1883.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 273 (2) K

  • 0.22 × 0.18 × 0.15 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.982, T max = 0.987

  • 4785 measured reflections

  • 1669 independent reflections

  • 1172 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.105

  • S = 1.03

  • 1669 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808028833/lh2689sup1.cif

e-64-o1931-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028833/lh2689Isup2.hkl

e-64-o1931-Isup2.hkl (82.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a key grant from Qiannan Normal College for Nationalities Foundation of Guizhou Province (grant No. 2007Z15) and the Qinzhou University Foundation of Guangxi Zhuang Autonomous Region of the People’s Republic of China (grant No. 2008XJKY-10B).

supplementary crystallographic information

Comment

Synthesis of anthracenone derivatives have attracted great interest due to their interesting biological activities (Müller et al., 1996, 1998, 2001; Prinz, Burgemeister & Wiegrebe, 1996; Prinz, Wiegrebe & Müller, 1996). Herein, we present a redetermination of the crystal structure of the title compound (I) which was originally refined in the non-conventional space group setting I2/a with unit cell parameters; a = 13.68 (4), b = 7.751 (3), c = 17.92 (4), β = 91.1 (3) (Ehrenberg, 1967). The current structure is of significantly higher precision than the orginal determination which was refined using intensity data obtained from Weissenberg photographs. The molecular structure of (I) is shown in Fig. 1. The molecule consists of two anthracen-9(10H)-one moieties linked together by a C—C [1.603 (3) Å] bond. A crystallographic twofold rotation axis bisects this bond.

Experimental

Reagents and solvents used were of commercially available quality. The title complex (I) was synthesized according to the method of Shi et al. (2004) and Li et al. (2002). CF3COOH (40 ml) was added dropwise with stirring to a solution of anthracene-9,10-dione (5.0 mmol) in 15 ml of anhydrous CH2Cl2. The mixture was then placed in an ice bath and NaBH4 (0.95 g, 25 mmol) was added in portions. The resulting mixture was stirred for 24 h at room temperature. The reaction mixture was poured into 200 ml ice-water. The organic layer was extracted with CH2Cl2, dried over Na2SO4 and evaporated in vacuo. The crude product was recrystallized from toluene twice to give the main product 9,9'-bianthracene-10,10'(9H,9'H)-dione.

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å and with Uiso(H) = 1.2 times Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure with displacement ellipsoids at the 30% probability level [symmetry code: (A) -x+2, y, -z+1/2].

Crystal data

C28H18O2 F(000) = 808
Mr = 386.42 Dx = 1.363 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 1069 reflections
a = 22.295 (4) Å θ = 2.9–24.7°
b = 7.7297 (12) Å µ = 0.09 mm1
c = 13.643 (2) Å T = 273 K
β = 126.768 (2)° Block, yellow
V = 1883.4 (5) Å3 0.22 × 0.18 × 0.15 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 1669 independent reflections
Radiation source: fine-focus sealed tube 1172 reflections with I > 2σ(I)
graphite Rint = 0.025
φ and ω scans θmax = 25.1°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −20→26
Tmin = 0.982, Tmax = 0.987 k = −9→9
4785 measured reflections l = −16→8

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.4019P] where P = (Fo2 + 2Fc2)/3
1669 reflections (Δ/σ)max = 0.001
136 parameters Δρmax = 0.12 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.86707 (8) −0.25682 (16) 0.29866 (15) 0.0855 (5)
C1 0.90675 (10) −0.1382 (2) 0.30813 (16) 0.0503 (4)
C2 0.98793 (9) −0.16248 (19) 0.37296 (14) 0.0423 (4)
C3 1.02019 (10) −0.3196 (2) 0.43139 (15) 0.0546 (5)
H3 0.9900 −0.4083 0.4254 0.066*
C4 1.09595 (11) −0.3451 (2) 0.49762 (16) 0.0616 (5)
H4 1.1169 −0.4513 0.5346 0.074*
C5 1.14056 (10) −0.2121 (2) 0.50886 (15) 0.0572 (5)
H5 1.1921 −0.2277 0.5553 0.069*
C6 1.10969 (8) −0.0560 (2) 0.45207 (13) 0.0457 (4)
H6 1.1408 0.0332 0.4616 0.055*
C7 1.03286 (8) −0.02957 (19) 0.38070 (13) 0.0379 (4)
C8 0.99831 (8) 0.13334 (18) 0.30704 (13) 0.0370 (4)
H8 1.0288 0.2306 0.3599 0.044*
C9 0.91944 (8) 0.16565 (19) 0.26300 (13) 0.0393 (4)
C10 0.88717 (9) 0.3276 (2) 0.21705 (15) 0.0491 (4)
H10 0.9158 0.4170 0.2191 0.059*
C11 0.81329 (10) 0.3570 (2) 0.16860 (16) 0.0591 (5)
H11 0.7926 0.4660 0.1382 0.071*
C12 0.76987 (10) 0.2268 (3) 0.16480 (16) 0.0589 (5)
H12 0.7199 0.2471 0.1314 0.071*
C13 0.80076 (9) 0.0673 (2) 0.21051 (15) 0.0535 (5)
H13 0.7716 −0.0207 0.2086 0.064*
C14 0.87527 (8) 0.0352 (2) 0.25983 (14) 0.0426 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0740 (10) 0.0554 (8) 0.1455 (14) −0.0116 (7) 0.0756 (10) 0.0060 (8)
C1 0.0571 (11) 0.0449 (10) 0.0648 (11) −0.0082 (8) 0.0450 (9) −0.0049 (8)
C2 0.0527 (10) 0.0383 (9) 0.0436 (9) −0.0017 (7) 0.0331 (8) −0.0012 (7)
C3 0.0705 (13) 0.0430 (10) 0.0553 (11) −0.0008 (9) 0.0403 (10) 0.0061 (8)
C4 0.0735 (14) 0.0512 (11) 0.0535 (11) 0.0147 (10) 0.0344 (10) 0.0138 (9)
C5 0.0496 (11) 0.0651 (12) 0.0458 (10) 0.0120 (9) 0.0227 (8) 0.0111 (9)
C6 0.0446 (10) 0.0512 (10) 0.0392 (9) 0.0003 (8) 0.0240 (8) 0.0024 (8)
C7 0.0447 (9) 0.0388 (9) 0.0327 (8) 0.0000 (7) 0.0245 (7) −0.0022 (7)
C8 0.0394 (9) 0.0327 (8) 0.0406 (9) −0.0041 (6) 0.0247 (7) −0.0050 (7)
C9 0.0427 (9) 0.0384 (8) 0.0414 (9) −0.0003 (7) 0.0276 (7) −0.0074 (7)
C10 0.0502 (11) 0.0421 (9) 0.0571 (11) 0.0027 (8) 0.0333 (9) −0.0037 (8)
C11 0.0568 (12) 0.0566 (11) 0.0606 (12) 0.0179 (9) 0.0333 (9) 0.0026 (9)
C12 0.0414 (10) 0.0781 (14) 0.0570 (11) 0.0074 (9) 0.0293 (9) −0.0030 (10)
C13 0.0464 (10) 0.0645 (12) 0.0558 (11) −0.0060 (9) 0.0339 (9) −0.0081 (9)
C14 0.0429 (9) 0.0472 (9) 0.0451 (9) −0.0033 (7) 0.0303 (8) −0.0070 (7)

Geometric parameters (Å, °)

O1—C1 1.2260 (18) C8—C9 1.500 (2)
C1—C14 1.473 (2) C8—C8i 1.603 (3)
C1—C2 1.475 (2) C8—H8 0.9800
C2—C3 1.393 (2) C9—C10 1.392 (2)
C2—C7 1.394 (2) C9—C14 1.392 (2)
C3—C4 1.372 (2) C10—C11 1.378 (2)
C3—H3 0.9300 C10—H10 0.9300
C4—C5 1.374 (2) C11—C12 1.376 (3)
C4—H4 0.9300 C11—H11 0.9300
C5—C6 1.375 (2) C12—C13 1.367 (2)
C5—H5 0.9300 C12—H12 0.9300
C6—C7 1.388 (2) C13—C14 1.391 (2)
C6—H6 0.9300 C13—H13 0.9300
C7—C8 1.504 (2)
O1—C1—C14 120.85 (16) C7—C8—C8i 110.23 (10)
O1—C1—C2 121.12 (16) C9—C8—H8 107.4
C14—C1—C2 117.97 (14) C7—C8—H8 107.4
C3—C2—C7 119.84 (16) C8i—C8—H8 107.4
C3—C2—C1 118.80 (15) C10—C9—C14 118.18 (15)
C7—C2—C1 121.31 (14) C10—C9—C8 119.74 (14)
C4—C3—C2 120.84 (17) C14—C9—C8 121.98 (13)
C4—C3—H3 119.6 C11—C10—C9 120.78 (16)
C2—C3—H3 119.6 C11—C10—H10 119.6
C3—C4—C5 119.33 (17) C9—C10—H10 119.6
C3—C4—H4 120.3 C12—C11—C10 120.62 (17)
C5—C4—H4 120.3 C12—C11—H11 119.7
C4—C5—C6 120.59 (17) C10—C11—H11 119.7
C4—C5—H5 119.7 C13—C12—C11 119.45 (17)
C6—C5—H5 119.7 C13—C12—H12 120.3
C5—C6—C7 121.03 (16) C11—C12—H12 120.3
C5—C6—H6 119.5 C12—C13—C14 120.73 (17)
C7—C6—H6 119.5 C12—C13—H13 119.6
C6—C7—C2 118.28 (14) C14—C13—H13 119.6
C6—C7—C8 121.01 (14) C13—C14—C9 120.23 (15)
C2—C7—C8 120.59 (14) C13—C14—C1 119.33 (15)
C9—C8—C7 114.57 (13) C9—C14—C1 120.43 (14)
C9—C8—C8i 109.65 (14)
O1—C1—C2—C3 −4.6 (2) C7—C8—C9—C10 166.38 (13)
C14—C1—C2—C3 172.72 (15) C8i—C8—C9—C10 −69.07 (14)
O1—C1—C2—C7 178.00 (16) C7—C8—C9—C14 −17.4 (2)
C14—C1—C2—C7 −4.7 (2) C8i—C8—C9—C14 107.14 (13)
C7—C2—C3—C4 0.6 (2) C14—C9—C10—C11 −0.7 (2)
C1—C2—C3—C4 −176.90 (15) C8—C9—C10—C11 175.66 (14)
C2—C3—C4—C5 1.7 (3) C9—C10—C11—C12 0.1 (3)
C3—C4—C5—C6 −1.5 (3) C10—C11—C12—C13 0.5 (3)
C4—C5—C6—C7 −1.0 (3) C11—C12—C13—C14 −0.5 (3)
C5—C6—C7—C2 3.2 (2) C12—C13—C14—C9 −0.1 (2)
C5—C6—C7—C8 −172.91 (15) C12—C13—C14—C1 −179.91 (16)
C3—C2—C7—C6 −3.0 (2) C10—C9—C14—C13 0.7 (2)
C1—C2—C7—C6 174.42 (14) C8—C9—C14—C13 −175.56 (13)
C3—C2—C7—C8 173.14 (14) C10—C9—C14—C1 −179.51 (14)
C1—C2—C7—C8 −9.5 (2) C8—C9—C14—C1 4.2 (2)
C6—C7—C8—C9 −164.09 (13) O1—C1—C14—C13 4.5 (3)
C2—C7—C8—C9 19.91 (19) C2—C1—C14—C13 −172.84 (14)
C6—C7—C8—C8i 71.68 (18) O1—C1—C14—C9 −175.31 (16)
C2—C7—C8—C8i −104.32 (17) C2—C1—C14—C9 7.4 (2)

Symmetry codes: (i) −x+2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2689).

References

  1. Bruker (2003). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Ehrenberg, M. (1967). Acta Cryst.22, 482–487.
  3. Li, P. C., Wang, T. S., Lee, G. H., Liu, Y. H., Wang, Y., Chen, C. T. & Chao, I. (2002). J. Org. Chem.67, 8002–8009. [DOI] [PubMed]
  4. Müller, K., Altmann, R. & Prinz, H. (1998). Eur. J. Med. Chem.33, 209–214.
  5. Müller, K., Breu, K. & Reindl, H. (2001). Eur. J. Med. Chem.36, 179–184. [DOI] [PubMed]
  6. Müller, K., Huang, H. S. & Wiegrebe, W. (1996). J. Med. Chem.39, 3132–3128. [DOI] [PubMed]
  7. Prinz, H., Burgemeister, T. & Wiegrebe, W. (1996). J. Org. Chem.61, 2857–2860. [DOI] [PubMed]
  8. Prinz, H., Wiegrebe, W. & Müller, K. (1996). J. Org. Chem.61, 2853–2856. [DOI] [PubMed]
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Shi, Z.-W., Li, Y.-Z., Li, Y., Lu, G.-Y. & Liu, S.-H. (2004). Acta Cryst. E60, o2275–o2277.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808028833/lh2689sup1.cif

e-64-o1931-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028833/lh2689Isup2.hkl

e-64-o1931-Isup2.hkl (82.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES