Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 6;64(Pt 10):m1228. doi: 10.1107/S160053680802758X

(1H-Imidazole-κN 3){N-[1-(2-oxidophenyl-κO)ethyl­idene]-l-phenyl­alaninato-κ2 N,O}copper(II)

Yong-Jun Han a, Gan-Qing Zhao a,*, Xiao-Jun Zhao a, Wen-Li Song a, Jie-Li Shi a
PMCID: PMC2959325  PMID: 21200988

Abstract

In the title compound, [Cu(C17H15NO3)(C3H4N2)], the CuII atom is four-coordinated by two O atoms and the N atom of the tridentate Schiff base ligand, and one N atom from the imidazole ligand in a distorted square-planar geometry. In the crystal structure, mol­ecules are linked into dimers by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Basu Baul et al. (2007); Casella & Guillotti (1983); Ganguly et al. (2008); Parekh et al. (2006); Plesch et al. (1997); Usman et al. (2003); Vigato & Tamburini (2004).graphic file with name e-64-m1228-scheme1.jpg

Experimental

Crystal data

  • [Cu(C17H15NO3)(C3H4N2)]

  • M r = 412.92

  • Orthorhombic, Inline graphic

  • a = 16.8029 (16) Å

  • b = 19.8231 (19) Å

  • c = 11.3642 (11) Å

  • V = 3785.3 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 291 (2) K

  • 0.43 × 0.34 × 0.25 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.630, T max = 0.759

  • 10101 measured reflections

  • 3534 independent reflections

  • 3008 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.067

  • S = 1.01

  • 3534 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983), 1557 Friedel pairs

  • Flack parameter: −0.029 (12)

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680802758X/ci2661sup1.cif

e-64-m1228-sup1.cif (19.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802758X/ci2661Isup2.hkl

e-64-m1228-Isup2.hkl (173.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Cu1—O1 1.8876 (19)
Cu1—N1 1.945 (2)
Cu1—O3 1.9511 (18)
Cu1—N2 1.958 (2)
O1—Cu1—N1 93.33 (9)
O1—Cu1—O3 171.74 (9)
N1—Cu1—O3 84.90 (8)
O1—Cu1—N2 93.20 (9)
N1—Cu1—N2 162.84 (10)
O3—Cu1—N2 90.77 (8)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3D⋯O2i 0.86 1.95 2.789 (3) 166

Symmetry code: (i) Inline graphic.

Acknowledgments

This research was supported by the National Science Foundation of China (grant No. 20676057).

supplementary crystallographic information

Comment

In the past decades, significant progress has been achieved in understanding the chemistry of transition metal complexes with Schiff base ligands composed of salicylaldehyde, 2-formylpyridine or their analogues, and α-amino acids (Vigato & Tamburini, 2004; Ganguly et al., 2008; Casella & Guillotti, 1983). A few stuctural studies have been performed on Schiff base complexes derived from 2-hydroxyacetophenone and animo acids (Usman et al., 2003; Basu Baul et al., 2007; Parekh et al., 2006). We report here the crystal structure of the title CuII complex.

The structure consists of discrete monomeric square-planar CuIIcomplex (Fig. 1 and Table 1). The four basal positions are occupied by three donor atoms from the tridentate Schiff base ligand, which furnishes an ONO donor set, with the fourth position occupied by one N atom from the imidazole ligand. The nitrogen heterocycle is planar and it forms an angle of 14.7 (2)° with the C1—C6 ring.

The crystal structure is stabilized by N—H···O type hydrogen bonds (Fig. 2 and Table 2). The H atom attached to N3 is hydrogen-bonded to the neighboring carboxylate oxygen O2 to form a dimer.

Experimental

The title compound was synthesized as described in the literature (Plesch et al., 1997). To L-phenylalanine (1.00 mmol) and potassium hydroxide (1.00 mmol) in 10 ml of methanol was added 2-hydroxyacetophenone (1.00 mmol in 10 ml of methanol) dropwise. The yellow solution was stirred for 2 h at 333 K. The resultant mixture was added dropwise to copper(II) acetate monohydrate (1.00 mmol) and imidazole (1.00 mmol) in an aqueous methanol solution (20 ml, 1:1 v/v), and heated with stirring for 2 h at 333 K. The dark blue solution was filtered and left for several days; the resulting dark blue crystals were filtered off, washed with water, and dried under vacuum.

Refinement

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) or 0.97 Å (CH2) and Uiso(H) = 1.2Ueq(C), C—H = 0.96 Å (CH3) and Uiso(H) = 1.5Ueq(C), and with N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

A view of the crystal packing along the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

[Cu(C17H15NO3)(C3H4N2)] F(000) = 1704
Mr = 412.92 Dx = 1.449 Mg m3
Orthorhombic, C2221 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c 2 Cell parameters from 3925 reflections
a = 16.8029 (16) Å θ = 2.4–23.2°
b = 19.8231 (19) Å µ = 1.18 mm1
c = 11.3642 (11) Å T = 291 K
V = 3785.3 (6) Å3 Block, dark blue
Z = 8 0.43 × 0.34 × 0.25 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3534 independent reflections
Radiation source: fine-focus sealed tube 3008 reflections with I > 2σ(I)
graphite Rint = 0.027
φ and ω scans θmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −20→16
Tmin = 0.630, Tmax = 0.759 k = −24→23
10101 measured reflections l = −13→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028 H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0324P)2 + 1.1795P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.001
3534 reflections Δρmax = 0.21 e Å3
245 parameters Δρmin = −0.16 e Å3
0 restraints Absolute structure: Flack (1983), 1557 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.029 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.10619 (2) 0.367615 (16) 0.77896 (3) 0.04364 (11)
N1 0.13985 (13) 0.27457 (10) 0.80032 (19) 0.0406 (5)
N2 0.10665 (16) 0.46531 (10) 0.75384 (17) 0.0459 (5)
N3 0.13752 (15) 0.57138 (11) 0.7787 (3) 0.0547 (6)
H3D 0.1544 0.6078 0.8115 0.066*
O1 0.05861 (14) 0.34996 (10) 0.63167 (17) 0.0624 (6)
O2 0.20326 (14) 0.32527 (10) 1.08596 (17) 0.0577 (6)
O3 0.14173 (11) 0.37985 (8) 0.94100 (15) 0.0470 (5)
C1 0.04519 (18) 0.29043 (15) 0.5868 (2) 0.0485 (7)
C2 0.06894 (17) 0.22761 (15) 0.6360 (2) 0.0461 (7)
C3 0.0429 (2) 0.16858 (17) 0.5793 (3) 0.0615 (9)
H3 0.0564 0.1271 0.6117 0.074*
C4 −0.0015 (2) 0.1697 (2) 0.4781 (4) 0.0778 (11)
H4 −0.0192 0.1296 0.4447 0.093*
C5 −0.0197 (2) 0.2304 (2) 0.4260 (3) 0.0704 (10)
H5 −0.0475 0.2312 0.3553 0.084*
C6 0.0028 (2) 0.28950 (16) 0.4780 (3) 0.0585 (8)
H6 −0.0098 0.3301 0.4416 0.070*
C7 0.11970 (16) 0.22199 (12) 0.7394 (2) 0.0444 (7)
C8 0.15118 (19) 0.15280 (12) 0.7715 (3) 0.0580 (8)
H8A 0.1901 0.1570 0.8328 0.087*
H8B 0.1753 0.1325 0.7035 0.087*
H8C 0.1081 0.1250 0.7984 0.087*
C9 0.19625 (17) 0.27141 (13) 0.8989 (2) 0.0454 (7)
H9 0.1897 0.2284 0.9404 0.054*
C10 0.17829 (18) 0.32911 (13) 0.9830 (2) 0.0439 (7)
C11 0.28234 (18) 0.27726 (15) 0.8539 (3) 0.0563 (8)
H11A 0.3185 0.2738 0.9201 0.068*
H11B 0.2933 0.2398 0.8014 0.068*
C12 0.29811 (17) 0.34248 (14) 0.7897 (3) 0.0520 (7)
C13 0.2807 (2) 0.34864 (17) 0.6704 (3) 0.0656 (10)
H13 0.2606 0.3117 0.6296 0.079*
C14 0.2928 (3) 0.4089 (2) 0.6120 (3) 0.0845 (12)
H14 0.2813 0.4122 0.5321 0.101*
C15 0.3216 (3) 0.4640 (2) 0.6713 (4) 0.0921 (13)
H15 0.3292 0.5047 0.6321 0.110*
C16 0.3390 (3) 0.45879 (18) 0.7879 (5) 0.0925 (14)
H16 0.3589 0.4960 0.8281 0.111*
C17 0.3274 (2) 0.39883 (19) 0.8466 (4) 0.0814 (11)
H17 0.3396 0.3962 0.9263 0.098*
C18 0.13541 (19) 0.51078 (14) 0.8262 (3) 0.0560 (9)
H18 0.1524 0.5013 0.9024 0.067*
C19 0.1082 (2) 0.56540 (16) 0.6691 (3) 0.0731 (10)
H19 0.1025 0.5998 0.6140 0.088*
C20 0.0885 (2) 0.49998 (17) 0.6544 (3) 0.0708 (11)
H20 0.0660 0.4816 0.5868 0.085*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0632 (2) 0.03698 (15) 0.03072 (15) 0.00253 (17) −0.00760 (17) −0.00122 (14)
N1 0.0497 (13) 0.0383 (11) 0.0339 (13) 0.0008 (10) 0.0026 (10) −0.0022 (9)
N2 0.0637 (15) 0.0421 (11) 0.0319 (12) 0.0013 (11) −0.0068 (12) 0.0016 (9)
N3 0.0760 (18) 0.0383 (12) 0.0498 (14) 0.0005 (11) −0.0040 (14) 0.0027 (12)
O1 0.0910 (16) 0.0539 (14) 0.0424 (11) −0.0013 (11) −0.0241 (11) −0.0035 (10)
O2 0.0849 (16) 0.0513 (12) 0.0368 (10) 0.0122 (11) −0.0180 (11) 0.0010 (9)
O3 0.0702 (13) 0.0376 (10) 0.0333 (10) 0.0094 (9) −0.0094 (8) −0.0010 (8)
C1 0.0508 (18) 0.0605 (19) 0.0342 (15) −0.0049 (15) 0.0044 (13) −0.0126 (14)
C2 0.0489 (18) 0.0522 (17) 0.0374 (15) −0.0067 (14) 0.0086 (13) −0.0135 (13)
C3 0.062 (2) 0.0598 (19) 0.062 (2) −0.0079 (16) 0.0073 (17) −0.0249 (17)
C4 0.070 (2) 0.084 (2) 0.080 (3) −0.017 (2) −0.001 (2) −0.039 (2)
C5 0.057 (2) 0.109 (3) 0.046 (2) −0.010 (2) −0.0005 (17) −0.030 (2)
C6 0.0519 (19) 0.084 (2) 0.0400 (19) −0.0024 (19) 0.0000 (13) −0.0078 (18)
C7 0.0538 (18) 0.0392 (13) 0.0400 (16) −0.0032 (12) 0.0140 (13) −0.0051 (11)
C8 0.078 (2) 0.0403 (15) 0.0562 (18) 0.0001 (13) 0.0123 (18) −0.0059 (15)
C9 0.0586 (19) 0.0357 (14) 0.0419 (15) 0.0043 (13) −0.0051 (14) 0.0034 (12)
C10 0.0550 (19) 0.0377 (15) 0.0391 (15) −0.0003 (13) −0.0068 (14) 0.0017 (12)
C11 0.056 (2) 0.0505 (18) 0.063 (2) 0.0117 (15) −0.0050 (16) −0.0008 (16)
C12 0.0463 (18) 0.0467 (16) 0.063 (2) 0.0048 (13) 0.0034 (17) 0.0049 (16)
C13 0.082 (3) 0.061 (2) 0.0542 (19) −0.0013 (17) 0.0195 (18) −0.0042 (16)
C14 0.115 (3) 0.079 (3) 0.059 (2) −0.003 (2) 0.022 (2) 0.009 (2)
C15 0.111 (4) 0.065 (3) 0.100 (3) −0.008 (2) 0.013 (3) 0.018 (2)
C16 0.116 (4) 0.055 (2) 0.107 (4) −0.026 (2) −0.029 (3) 0.010 (2)
C17 0.087 (3) 0.073 (2) 0.084 (3) −0.011 (2) −0.027 (2) 0.009 (2)
C18 0.088 (3) 0.0427 (16) 0.0375 (16) 0.0023 (15) −0.0107 (15) 0.0019 (13)
C19 0.108 (3) 0.0540 (19) 0.057 (2) −0.002 (2) −0.013 (2) 0.0230 (16)
C20 0.115 (3) 0.0569 (19) 0.0401 (17) −0.004 (2) −0.025 (2) 0.0128 (15)

Geometric parameters (Å, °)

Cu1—O1 1.8876 (19) C7—C8 1.514 (4)
Cu1—N1 1.945 (2) C8—H8A 0.96
Cu1—O3 1.9511 (18) C8—H8B 0.96
Cu1—N2 1.958 (2) C8—H8C 0.96
N1—C7 1.296 (3) C9—C10 1.520 (4)
N1—C9 1.469 (3) C9—C11 1.539 (4)
N2—C18 1.312 (4) C9—H9 0.98
N2—C20 1.358 (4) C11—C12 1.508 (4)
N3—C18 1.317 (4) C11—H11A 0.97
N3—C19 1.346 (4) C11—H11B 0.97
N3—H3D 0.86 C12—C17 1.381 (4)
O1—C1 1.305 (3) C12—C13 1.392 (4)
O2—C10 1.246 (3) C13—C14 1.383 (5)
O3—C10 1.271 (3) C13—H13 0.93
C1—C2 1.422 (4) C14—C15 1.371 (6)
C1—C6 1.427 (4) C14—H14 0.93
C2—C3 1.405 (4) C15—C16 1.361 (6)
C2—C7 1.457 (4) C15—H15 0.93
C3—C4 1.371 (5) C16—C17 1.377 (5)
C3—H3 0.93 C16—H16 0.93
C4—C5 1.376 (5) C17—H17 0.93
C4—H4 0.93 C18—H18 0.93
C5—C6 1.365 (4) C19—C20 1.349 (4)
C5—H5 0.93 C19—H19 0.93
C6—H6 0.93 C20—H20 0.93
O1—Cu1—N1 93.33 (9) H8B—C8—H8C 109.5
O1—Cu1—O3 171.74 (9) N1—C9—C10 108.6 (2)
N1—Cu1—O3 84.90 (8) N1—C9—C11 110.4 (2)
O1—Cu1—N2 93.20 (9) C10—C9—C11 109.8 (2)
N1—Cu1—N2 162.84 (10) N1—C9—H9 109.3
O3—Cu1—N2 90.77 (8) C10—C9—H9 109.3
C7—N1—C9 122.8 (2) C11—C9—H9 109.3
C7—N1—Cu1 128.33 (19) O2—C10—O3 124.3 (3)
C9—N1—Cu1 108.86 (16) O2—C10—C9 118.5 (2)
C18—N2—C20 104.9 (2) O3—C10—C9 117.1 (2)
C18—N2—Cu1 126.11 (19) C12—C11—C9 113.0 (2)
C20—N2—Cu1 128.4 (2) C12—C11—H11A 109.0
C18—N3—C19 106.8 (3) C9—C11—H11A 109.0
C18—N3—H3D 126.6 C12—C11—H11B 109.0
C19—N3—H3D 126.6 C9—C11—H11B 109.0
C1—O1—Cu1 125.97 (19) H11A—C11—H11B 107.8
C10—O3—Cu1 113.79 (16) C17—C12—C13 117.4 (3)
O1—C1—C2 126.1 (3) C17—C12—C11 122.0 (3)
O1—C1—C6 115.9 (3) C13—C12—C11 120.6 (3)
C2—C1—C6 118.0 (3) C14—C13—C12 120.8 (3)
C3—C2—C1 117.5 (3) C14—C13—H13 119.6
C3—C2—C7 119.2 (3) C12—C13—H13 119.6
C1—C2—C7 123.3 (2) C15—C14—C13 120.2 (4)
C4—C3—C2 122.7 (4) C15—C14—H14 119.9
C4—C3—H3 118.6 C13—C14—H14 119.9
C2—C3—H3 118.6 C16—C15—C14 119.6 (4)
C3—C4—C5 119.7 (3) C16—C15—H15 120.2
C3—C4—H4 120.1 C14—C15—H15 120.2
C5—C4—H4 120.1 C15—C16—C17 120.4 (4)
C6—C5—C4 120.2 (3) C15—C16—H16 119.8
C6—C5—H5 119.9 C17—C16—H16 119.8
C4—C5—H5 119.9 C16—C17—C12 121.5 (4)
C5—C6—C1 121.6 (3) C16—C17—H17 119.3
C5—C6—H6 119.2 C12—C17—H17 119.3
C1—C6—H6 119.2 N2—C18—N3 112.3 (3)
N1—C7—C2 121.5 (2) N2—C18—H18 123.9
N1—C7—C8 120.6 (3) N3—C18—H18 123.9
C2—C7—C8 117.9 (2) N3—C19—C20 106.8 (3)
C7—C8—H8A 109.5 N3—C19—H19 126.6
C7—C8—H8B 109.5 C20—C19—H19 126.6
H8A—C8—H8B 109.5 C19—C20—N2 109.2 (3)
C7—C8—H8C 109.5 C19—C20—H20 125.4
H8A—C8—H8C 109.5 N2—C20—H20 125.4

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3D···O2i 0.86 1.95 2.789 (3) 166

Symmetry codes: (i) x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2661).

References

  1. Basu Baul, T. S., Masharing, C., Ruisi, G., Jirásko, R., Holčapek, M., Dick, D. V., Wolstenholme, D. & Linden, A. (2007). J. Organomet. Chem.692, 4849–4862.
  2. Bruker (2000). SMART and SAINT Bruker Axs Inc., Madison, Wisconsin, USA.
  3. Casella, L. & Guillotti, M. (1983). Inorg. Chem.22, 2259–2266.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Ganguly, R., Sreenivasulu, B. & Vittal, J. J. (2008). Coord. Chem. Rev.252, 1027–1050.
  6. Parekh, H. M., Mehta, S. R. & Patel, M. N. (2006). Russ. J. Inorg. Chem.35, 67–72.
  7. Plesch, G., Friebel, C., Warda, S. A., Sivý, J. & Švajlenová, O. (1997). Transition Met. Chem.22, 433–440.
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Usman, A., Fun, H.-K., Basu Baul, T. S. & Paul, P. C. (2003). Acta Cryst. E59, m438–m440.
  11. Vigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev.248, 1717–2128.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680802758X/ci2661sup1.cif

e-64-m1228-sup1.cif (19.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802758X/ci2661Isup2.hkl

e-64-m1228-Isup2.hkl (173.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES