Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 20;64(Pt 10):o1961–o1962. doi: 10.1107/S1600536808029218

N′-[(E)-1-Phenyl­ethyl­idene]benzo­hydrazide

Hoong-Kun Fun a,*, K V Sujith b, P S Patil c,, B Kalluraya b, Suchada Chantrapromma d,§
PMCID: PMC2959329  PMID: 21201163

Abstract

The title compound, C15H14N2O, crystallized with two independent mol­ecules in the asymmetric unit. Both mol­ecules are non-planar and have an E configuration with respect to the C=N bond. The dihedral angles between the two benzene rings are 11.1 (2)° in one mol­ecule and 12.40 (19)° in the other. In the crystal structure, the mol­ecules are linked by N—H⋯O hydrogen bonds and weak C—H⋯O inter­actions into infinite one-dimensional chains along [1 0 0]. The crystal structure is further stabilized by N—H⋯O hydrogen bonds, weak C—H⋯O and very weak C—H⋯π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987). For background to the applications of hydrazone and benzohydrazide, see, for example: Bratenko et al. (1999); Raj et al. (2007); Rollas et al. (2002); Sridhar et al. (2003); Zhang et al. (2007).graphic file with name e-64-o1961-scheme1.jpg

Experimental

Crystal data

  • C15H14N2O

  • M r = 238.28

  • Orthorhombic, Inline graphic

  • a = 8.2237 (6) Å

  • b = 5.5938 (4) Å

  • c = 52.839 (4) Å

  • V = 2430.7 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100.0 (1) K

  • 0.50 × 0.22 × 0.05 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.959, T max = 0.996

  • 23699 measured reflections

  • 3572 independent reflections

  • 2925 reflections with I > 2σ(I)

  • R int = 0.069

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064

  • wR(F 2) = 0.159

  • S = 1.08

  • 3572 reflections

  • 327 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808029218/si2108sup1.cif

e-64-o1961-sup1.cif (25.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029218/si2108Isup2.hkl

e-64-o1961-Isup2.hkl (175.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2NA⋯O2Ai 0.91 1.95 2.857 (4) 170
N2B—H2NB⋯O2Bii 0.73 2.17 2.866 (4) 161
C14A—H14A⋯O2Ai 0.93 2.38 3.108 (5) 135
C14B—H14B⋯O2Bii 0.93 2.38 3.113 (5) 135
C15A—H15A⋯O2Ai 0.96 2.58 3.053 (5) 110
C15B—H15D⋯O2Bii 0.96 2.44 3.038 (5) 120
C1A—H1AACg1ii 0.93 2.96 3.729 (4) 141
C4A—H4AACg1iii 0.93 2.95 3.724 (5) 141
C1B—H1BACg2i 0.93 2.88 3.726 (4) 141
C4B—H4BACg2iv 0.93 2.94 3.714 (4) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic. Cg1 and Cg2 are the centroids of the C1A–C6A and C1B–C6B phenyl rings, respectively.

Acknowledgments

This work is supported by the Department of Science and Technology (DST), Government of India, under grant No. SR/S2/LOP-17/2006. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Hydrazones are versatile intermediates and important building blocks. Hydrazones of aliphatic and aromatic methyl ketones yield pyrazole-4-carboxaldehyde upon diformylation on treatment with Vilsmeier reagent (Bratenko et al., 1999). Aryl hydrazones are important building blocks for the synthesis of a variety of heterocyclic compounds such as pyrazolines and pyrazoles (Sridhar et al., 2003). Aryl hydrazones have been most conveniently synthesized by the reaction of aryl hydrazines with carbonyl compounds. Hydrazones have been demonstrated to possess antimicrobial, anticonvulsant, analgesic, antiinflammatory, antiplatelet, antitubercular, anticancer and antitumoral activities (Rollas et al., 2002). Hydrazones possessing an azometine -NHN=CH- proton constitute an important class of compounds for new drug development. Therefore, many researchers have synthesized these compounds as well as their metal complexes as target structures and evaluated their biological activities (Raj et al., 2007; Zhang et al., 2007). These observations guided us to synthesize the title compound and its crystal structure was reported here.

In the asymmetric unit of the title compound (Fig. 1), there are two independent molecules A and B. Bond lengths in molecules A and B are slightly different but all are in normal ranges (Allen et al., 1987). Both molecules are not planar and exist in the E configuration which respect to the C═N bond. The dihedral angles between the two benzene rings are 11.1 (2)° in A and 12.40 (19)° in B. In molecule A, the interplanar angle between the mean plane through N2A/O2A/C8A/C9A and N1A/N2A/C6A/C7A/C15A planes = 20.8 (2)°. In molecule B atoms N1B, N2B, C7B and C15B lie on the same plane and this plane makes the dihedral angle with the mean plane through N2B/O2B/C8B/C9B = 20.4 (2)°.

Fig. 2 shows that the molecules are linked into chains along [1 0 0] through N—H···O hydrogen bonds and weak C—H···O and very weak C—H···π interactions (Table 1); Cg1, Cg2, Cg3 and Cg4 are the centroids of the C1A–C6A, C1B–C6B, C9A–C14A and C9B–C14B rings, respectively.

Experimental

The title compound was obtained by refluxing phenyl hydrazide (0.01 mol) and acetophenone (0.01 mol) in ethanol (30 ml) by adding 3 drops of concentrated Sulfuric acid for 3 hr. Excess ethanol was removed from the reaction mixture under reduced pressure. The solid product obtained was filtered, washed with ethanol and dried. Colorless single crystals of the title compound suitable for x-ray structure determination were grown by slow evaporation of an ethanol solution at room temperature.

Refinement

All H atoms were constrained in a riding motion approximation with N—H = 0.73 and 0.91 Å, Caryl—H=0.93 and Cmethyl—H=0.96 Å. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.76 Å from C10A and the deepest hole is located at 0.72 Å from H1AA. As there is no large anomalous dispersion for the determination of the absolute structure, a total of 2250 Friedel pairs were merged before final refinement.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering.

Fig. 2.

Fig. 2.

The crystal packing of the major components of (I), viewed along the b axis showing that the molecules are linked in infinite one-dimensional chains along the a axis. Hydrogen bonds are drawn as dashed lines.

Crystal data

C15H14N2O F(000) = 1008
Mr = 238.28 Dx = 1.302 Mg m3
Orthorhombic, Pca21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 3572 reflections
a = 8.2237 (6) Å θ = 0.8–30.0°
b = 5.5938 (4) Å µ = 0.08 mm1
c = 52.839 (4) Å T = 100 K
V = 2430.7 (3) Å3 Plate, colorless
Z = 8 0.50 × 0.22 × 0.05 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3572 independent reflections
Radiation source: fine-focus sealed tube 2925 reflections with I > 2σ(I)
graphite Rint = 0.069
Detector resolution: 8.33 pixels mm-1 θmax = 30.0°, θmin = 0.8°
ω scans h = −11→11
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −7→7
Tmin = 0.959, Tmax = 0.996 l = −74→73
23699 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0598P)2 + 2.0097P] where P = (Fo2 + 2Fc2)/3
3572 reflections (Δ/σ)max < 0.001
327 parameters Δρmax = 0.29 e Å3
1 restraint Δρmin = −0.30 e Å3

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O2A 0.4444 (3) −0.2422 (5) 0.28192 (5) 0.0225 (5)
N1A 0.5650 (4) 0.0608 (6) 0.24842 (6) 0.0211 (7)
N2A 0.6306 (4) 0.0417 (6) 0.27253 (6) 0.0201 (7)
H2NA 0.7358 0.0912 0.2746 0.024*
C1A 0.5851 (5) 0.4279 (7) 0.19173 (7) 0.0228 (8)
H1AA 0.6561 0.5481 0.1968 0.027*
C2A 0.5277 (5) 0.4246 (7) 0.16709 (7) 0.0248 (8)
H2AA 0.5604 0.5425 0.1558 0.030*
C3A 0.4219 (5) 0.2471 (7) 0.15916 (7) 0.0237 (8)
H3AA 0.3846 0.2445 0.1426 0.028*
C4A 0.3719 (6) 0.0726 (7) 0.17624 (8) 0.0259 (8)
H4AA 0.2996 −0.0457 0.1711 0.031*
C5A 0.4294 (5) 0.0744 (7) 0.20083 (7) 0.0221 (8)
H5AA 0.3959 −0.0440 0.2120 0.026*
C6A 0.5372 (5) 0.2515 (6) 0.20916 (7) 0.0183 (7)
C7A 0.6028 (4) 0.2496 (6) 0.23548 (7) 0.0186 (7)
C8A 0.5670 (5) −0.1290 (6) 0.28767 (7) 0.0194 (7)
C9A 0.6454 (5) −0.1709 (6) 0.31291 (7) 0.0192 (7)
C10A 0.6062 (5) −0.3840 (7) 0.32523 (7) 0.0237 (8)
H10A 0.5381 −0.4942 0.3174 0.028*
C11A 0.6686 (6) −0.4318 (7) 0.34912 (8) 0.0281 (9)
H11A 0.6405 −0.5727 0.3574 0.034*
C12A 0.7725 (5) −0.2705 (7) 0.36069 (8) 0.0284 (9)
H12A 0.8161 −0.3045 0.3765 0.034*
C13A 0.8115 (5) −0.0584 (7) 0.34857 (7) 0.0264 (8)
H13A 0.8798 0.0509 0.3565 0.032*
C14A 0.7494 (5) −0.0079 (7) 0.32479 (7) 0.0223 (7)
H14A 0.7768 0.1343 0.3167 0.027*
C15A 0.7015 (5) 0.4561 (6) 0.24455 (8) 0.0240 (8)
H15A 0.6978 0.4627 0.2627 0.036*
H15B 0.6581 0.6016 0.2377 0.036*
H15C 0.8121 0.4370 0.2391 0.036*
O2B 0.7470 (3) 0.7474 (4) 0.48915 (5) 0.0219 (5)
N1B 0.8664 (4) 0.4422 (5) 0.52262 (6) 0.0191 (6)
N2B 0.9356 (4) 0.4640 (6) 0.49876 (6) 0.0217 (7)
H2NB 1.0056 0.4027 0.4934 0.026*
C1B 0.8836 (5) 0.0735 (7) 0.57897 (7) 0.0230 (8)
H1BA 0.9549 −0.0459 0.5738 0.028*
C2B 0.8256 (5) 0.0752 (7) 0.60357 (7) 0.0256 (8)
H2BA 0.8590 −0.0419 0.6149 0.031*
C3B 0.7171 (5) 0.2523 (7) 0.61138 (7) 0.0242 (8)
H3BA 0.6778 0.2529 0.6279 0.029*
C4B 0.6682 (5) 0.4275 (7) 0.59443 (7) 0.0233 (8)
H4BA 0.5953 0.5450 0.5996 0.028*
C5B 0.7273 (5) 0.4279 (6) 0.56996 (7) 0.0214 (8)
H5BA 0.6950 0.5472 0.5588 0.026*
C6B 0.8357 (5) 0.2499 (6) 0.56181 (7) 0.0178 (7)
C7B 0.9020 (5) 0.2528 (6) 0.53547 (7) 0.0181 (7)
C8B 0.8716 (5) 0.6352 (6) 0.48358 (7) 0.0191 (7)
C9B 0.9556 (5) 0.6867 (7) 0.45879 (7) 0.0200 (7)
C10B 0.9161 (5) 0.9028 (7) 0.44669 (8) 0.0239 (8)
H10B 0.8449 1.0098 0.4543 0.029*
C11B 0.9835 (5) 0.9560 (7) 0.42336 (7) 0.0248 (8)
H11B 0.9575 1.0990 0.4153 0.030*
C12B 1.0899 (5) 0.7967 (7) 0.41187 (7) 0.0258 (8)
H12B 1.1345 0.8333 0.3962 0.031*
C13B 1.1300 (5) 0.5833 (7) 0.42368 (7) 0.0249 (8)
H13B 1.2033 0.4785 0.4161 0.030*
C14B 1.0592 (5) 0.5268 (7) 0.44704 (7) 0.0228 (8)
H14B 1.0821 0.3809 0.4547 0.027*
C15B 1.0038 (5) 0.0472 (6) 0.52656 (7) 0.0215 (8)
H15D 1.0135 0.0531 0.5085 0.032*
H15E 0.9531 −0.1004 0.5314 0.032*
H15F 1.1099 0.0571 0.5341 0.032*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O2A 0.0164 (13) 0.0242 (12) 0.0268 (13) −0.0029 (11) −0.0018 (11) 0.0001 (10)
N1A 0.0199 (17) 0.0221 (15) 0.0214 (15) −0.0012 (12) −0.0012 (13) 0.0022 (12)
N2A 0.0191 (17) 0.0198 (15) 0.0213 (16) −0.0015 (12) −0.0014 (13) 0.0019 (12)
C1A 0.023 (2) 0.0184 (16) 0.027 (2) −0.0005 (14) 0.0004 (15) 0.0014 (14)
C2A 0.023 (2) 0.0258 (18) 0.0253 (19) 0.0017 (16) −0.0004 (16) 0.0067 (15)
C3A 0.025 (2) 0.0271 (19) 0.0189 (17) 0.0047 (16) −0.0020 (15) 0.0016 (14)
C4A 0.029 (2) 0.0225 (18) 0.0258 (18) −0.0018 (16) −0.0003 (16) −0.0034 (15)
C5A 0.0199 (19) 0.0209 (17) 0.0254 (18) −0.0009 (15) 0.0002 (15) 0.0020 (14)
C6A 0.0164 (17) 0.0182 (15) 0.0203 (16) 0.0023 (13) 0.0006 (13) 0.0000 (13)
C7A 0.0143 (17) 0.0199 (16) 0.0216 (17) 0.0029 (13) −0.0002 (13) −0.0012 (13)
C8A 0.0195 (18) 0.0158 (15) 0.0229 (18) 0.0009 (14) 0.0000 (15) 0.0001 (13)
C9A 0.0168 (18) 0.0188 (16) 0.0221 (17) 0.0005 (13) 0.0011 (14) 0.0027 (13)
C10A 0.025 (2) 0.0204 (17) 0.0261 (19) 0.0000 (15) −0.0029 (16) 0.0017 (14)
C11A 0.028 (2) 0.0273 (19) 0.029 (2) 0.0009 (16) 0.0015 (17) 0.0061 (16)
C12A 0.028 (2) 0.034 (2) 0.0226 (18) 0.0027 (17) −0.0020 (16) 0.0043 (16)
C13A 0.021 (2) 0.033 (2) 0.0253 (19) −0.0016 (16) 0.0004 (16) −0.0012 (15)
C14A 0.022 (2) 0.0233 (16) 0.0218 (18) −0.0040 (16) 0.0001 (16) 0.0010 (14)
C15A 0.024 (2) 0.0192 (17) 0.029 (2) 0.0007 (15) −0.0032 (16) −0.0005 (14)
O2B 0.0192 (13) 0.0213 (12) 0.0253 (13) 0.0023 (11) 0.0021 (10) 0.0007 (10)
N1B 0.0182 (16) 0.0200 (14) 0.0193 (15) −0.0017 (12) 0.0029 (12) −0.0006 (11)
N2B 0.0213 (17) 0.0247 (15) 0.0190 (15) 0.0021 (13) 0.0058 (13) −0.0008 (12)
C1B 0.0215 (19) 0.0189 (16) 0.028 (2) 0.0017 (14) 0.0004 (16) 0.0025 (15)
C2B 0.025 (2) 0.0252 (18) 0.027 (2) 0.0000 (16) −0.0021 (17) 0.0070 (15)
C3B 0.022 (2) 0.0281 (18) 0.0221 (18) −0.0019 (15) 0.0016 (15) 0.0002 (15)
C4B 0.024 (2) 0.0255 (18) 0.0210 (17) 0.0030 (16) 0.0015 (15) −0.0030 (14)
C5B 0.026 (2) 0.0183 (15) 0.0205 (17) 0.0028 (14) −0.0004 (15) 0.0012 (13)
C6B 0.0158 (17) 0.0142 (14) 0.0235 (16) −0.0021 (13) 0.0002 (14) 0.0006 (12)
C7B 0.0155 (17) 0.0153 (16) 0.0237 (18) −0.0002 (13) −0.0012 (13) −0.0028 (13)
C8B 0.0188 (18) 0.0181 (16) 0.0204 (17) −0.0015 (14) 0.0005 (14) −0.0018 (13)
C9B 0.0177 (18) 0.0219 (16) 0.0204 (16) −0.0029 (14) 0.0015 (14) −0.0035 (14)
C10B 0.0217 (19) 0.0229 (17) 0.027 (2) 0.0011 (15) −0.0024 (15) 0.0000 (15)
C11B 0.028 (2) 0.0220 (18) 0.0240 (18) −0.0030 (15) −0.0011 (16) 0.0041 (14)
C12B 0.025 (2) 0.0319 (19) 0.0201 (17) −0.0053 (16) 0.0006 (15) 0.0014 (15)
C13B 0.025 (2) 0.0270 (17) 0.0222 (18) 0.0012 (16) 0.0045 (16) −0.0037 (14)
C14B 0.025 (2) 0.0201 (16) 0.0231 (18) 0.0018 (15) −0.0015 (15) −0.0001 (14)
C15B 0.0212 (19) 0.0185 (16) 0.0250 (18) 0.0035 (14) 0.0011 (15) −0.0018 (14)

Geometric parameters (Å, °)

O2A—C8A 1.229 (5) O2B—C8B 1.237 (5)
N1A—C7A 1.296 (5) N1B—C7B 1.292 (5)
N1A—N2A 1.388 (4) N1B—N2B 1.389 (4)
N2A—C8A 1.351 (5) N2B—C8B 1.356 (5)
N2A—H2NA 0.9145 N2B—H2NB 0.7271
C1A—C2A 1.385 (5) C1B—C2B 1.384 (5)
C1A—C6A 1.406 (5) C1B—C6B 1.397 (5)
C1A—H1AA 0.9300 C1B—H1BA 0.9300
C2A—C3A 1.385 (6) C2B—C3B 1.395 (6)
C2A—H2AA 0.9300 C2B—H2BA 0.9300
C3A—C4A 1.392 (6) C3B—C4B 1.387 (5)
C3A—H3AA 0.9300 C3B—H3BA 0.9300
C4A—C5A 1.382 (5) C4B—C5B 1.381 (5)
C4A—H4AA 0.9300 C4B—H4BA 0.9300
C5A—C6A 1.400 (5) C5B—C6B 1.404 (5)
C5A—H5AA 0.9300 C5B—H5BA 0.9300
C6A—C7A 1.492 (5) C6B—C7B 1.495 (5)
C7A—C15A 1.491 (5) C7B—C15B 1.498 (5)
C8A—C9A 1.499 (5) C8B—C9B 1.509 (5)
C9A—C10A 1.396 (5) C9B—C14B 1.382 (5)
C9A—C14A 1.399 (5) C9B—C10B 1.406 (5)
C10A—C11A 1.388 (6) C10B—C11B 1.384 (6)
C10A—H10A 0.9300 C10B—H10B 0.9300
C11A—C12A 1.385 (6) C11B—C12B 1.389 (6)
C11A—H11A 0.9300 C11B—H11B 0.9300
C12A—C13A 1.386 (6) C12B—C13B 1.387 (6)
C12A—H12A 0.9300 C12B—H12B 0.9300
C13A—C14A 1.385 (5) C13B—C14B 1.401 (5)
C13A—H13A 0.9300 C13B—H13B 0.9300
C14A—H14A 0.9300 C14B—H14B 0.9300
C15A—H15A 0.9600 C15B—H15D 0.9600
C15A—H15B 0.9600 C15B—H15E 0.9600
C15A—H15C 0.9600 C15B—H15F 0.9600
C7A—N1A—N2A 117.0 (3) C7B—N1B—N2B 117.1 (3)
C8A—N2A—N1A 116.6 (3) C8B—N2B—N1B 116.1 (3)
C8A—N2A—H2NA 120.6 C8B—N2B—H2NB 114.2
N1A—N2A—H2NA 117.0 N1B—N2B—H2NB 129.5
C2A—C1A—C6A 120.7 (4) C2B—C1B—C6B 120.5 (4)
C2A—C1A—H1AA 119.6 C2B—C1B—H1BA 119.8
C6A—C1A—H1AA 119.6 C6B—C1B—H1BA 119.8
C3A—C2A—C1A 120.5 (4) C1B—C2B—C3B 120.2 (4)
C3A—C2A—H2AA 119.7 C1B—C2B—H2BA 119.9
C1A—C2A—H2AA 119.7 C3B—C2B—H2BA 119.9
C2A—C3A—C4A 119.5 (4) C4B—C3B—C2B 119.7 (4)
C2A—C3A—H3AA 120.3 C4B—C3B—H3BA 120.1
C4A—C3A—H3AA 120.3 C2B—C3B—H3BA 120.1
C5A—C4A—C3A 120.2 (4) C5B—C4B—C3B 120.2 (4)
C5A—C4A—H4AA 119.9 C5B—C4B—H4BA 119.9
C3A—C4A—H4AA 119.9 C3B—C4B—H4BA 119.9
C4A—C5A—C6A 121.1 (4) C4B—C5B—C6B 120.6 (3)
C4A—C5A—H5AA 119.4 C4B—C5B—H5BA 119.7
C6A—C5A—H5AA 119.4 C6B—C5B—H5BA 119.7
C5A—C6A—C1A 117.9 (3) C1B—C6B—C5B 118.8 (3)
C5A—C6A—C7A 121.1 (3) C1B—C6B—C7B 120.6 (3)
C1A—C6A—C7A 121.0 (3) C5B—C6B—C7B 120.6 (3)
N1A—C7A—C15A 126.3 (3) N1B—C7B—C6B 114.5 (3)
N1A—C7A—C6A 114.3 (3) N1B—C7B—C15B 126.2 (3)
C15A—C7A—C6A 119.4 (3) C6B—C7B—C15B 119.2 (3)
O2A—C8A—N2A 122.4 (3) O2B—C8B—N2B 122.6 (3)
O2A—C8A—C9A 119.5 (3) O2B—C8B—C9B 119.3 (3)
N2A—C8A—C9A 118.1 (3) N2B—C8B—C9B 118.1 (3)
C10A—C9A—C14A 119.2 (3) C14B—C9B—C10B 119.7 (4)
C10A—C9A—C8A 116.7 (3) C14B—C9B—C8B 123.3 (3)
C14A—C9A—C8A 124.1 (3) C10B—C9B—C8B 116.9 (3)
C11A—C10A—C9A 120.2 (4) C11B—C10B—C9B 119.8 (4)
C11A—C10A—H10A 119.9 C11B—C10B—H10B 120.1
C9A—C10A—H10A 119.9 C9B—C10B—H10B 120.1
C12A—C11A—C10A 120.2 (4) C10B—C11B—C12B 120.3 (4)
C12A—C11A—H11A 119.9 C10B—C11B—H11B 119.9
C10A—C11A—H11A 119.9 C12B—C11B—H11B 119.9
C11A—C12A—C13A 119.7 (4) C13B—C12B—C11B 120.4 (4)
C11A—C12A—H12A 120.1 C13B—C12B—H12B 119.8
C13A—C12A—H12A 120.1 C11B—C12B—H12B 119.8
C14A—C13A—C12A 120.6 (4) C12B—C13B—C14B 119.4 (4)
C14A—C13A—H13A 119.7 C12B—C13B—H13B 120.3
C12A—C13A—H13A 119.7 C14B—C13B—H13B 120.3
C13A—C14A—C9A 120.0 (4) C9B—C14B—C13B 120.4 (4)
C13A—C14A—H14A 120.0 C9B—C14B—H14B 119.8
C9A—C14A—H14A 120.0 C13B—C14B—H14B 119.8
C7A—C15A—H15A 109.5 C7B—C15B—H15D 109.5
C7A—C15A—H15B 109.5 C7B—C15B—H15E 109.5
H15A—C15A—H15B 109.5 H15D—C15B—H15E 109.5
C7A—C15A—H15C 109.5 C7B—C15B—H15F 109.5
H15A—C15A—H15C 109.5 H15D—C15B—H15F 109.5
H15B—C15A—H15C 109.5 H15E—C15B—H15F 109.5
C7A—N1A—N2A—C8A 167.6 (3) C7B—N1B—N2B—C8B 166.7 (3)
C6A—C1A—C2A—C3A 0.0 (6) C6B—C1B—C2B—C3B 0.7 (6)
C1A—C2A—C3A—C4A 0.7 (6) C1B—C2B—C3B—C4B −0.3 (6)
C2A—C3A—C4A—C5A −1.0 (6) C2B—C3B—C4B—C5B −0.5 (6)
C3A—C4A—C5A—C6A 0.6 (6) C3B—C4B—C5B—C6B 0.9 (6)
C4A—C5A—C6A—C1A 0.1 (6) C2B—C1B—C6B—C5B −0.3 (6)
C4A—C5A—C6A—C7A −178.3 (3) C2B—C1B—C6B—C7B 178.1 (4)
C2A—C1A—C6A—C5A −0.4 (6) C4B—C5B—C6B—C1B −0.5 (6)
C2A—C1A—C6A—C7A 178.0 (3) C4B—C5B—C6B—C7B −178.9 (4)
N2A—N1A—C7A—C15A −4.2 (6) N2B—N1B—C7B—C6B 174.9 (3)
N2A—N1A—C7A—C6A 176.2 (3) N2B—N1B—C7B—C15B −3.6 (6)
C5A—C6A—C7A—N1A 6.8 (5) C1B—C6B—C7B—N1B −170.8 (3)
C1A—C6A—C7A—N1A −171.5 (3) C5B—C6B—C7B—N1B 7.6 (5)
C5A—C6A—C7A—C15A −172.8 (4) C1B—C6B—C7B—C15B 7.8 (5)
C1A—C6A—C7A—C15A 8.8 (5) C5B—C6B—C7B—C15B −173.8 (3)
N1A—N2A—C8A—O2A −9.0 (5) N1B—N2B—C8B—O2B −8.4 (5)
N1A—N2A—C8A—C9A 174.2 (3) N1B—N2B—C8B—C9B 172.6 (3)
O2A—C8A—C9A—C10A 19.1 (5) O2B—C8B—C9B—C14B −158.2 (4)
N2A—C8A—C9A—C10A −164.0 (3) N2B—C8B—C9B—C14B 20.9 (6)
O2A—C8A—C9A—C14A −158.9 (4) O2B—C8B—C9B—C10B 17.6 (5)
N2A—C8A—C9A—C14A 18.0 (5) N2B—C8B—C9B—C10B −163.3 (3)
C14A—C9A—C10A—C11A 0.6 (6) C14B—C9B—C10B—C11B −1.2 (6)
C8A—C9A—C10A—C11A −177.4 (4) C8B—C9B—C10B—C11B −177.2 (4)
C9A—C10A—C11A—C12A −1.2 (6) C9B—C10B—C11B—C12B 0.0 (6)
C10A—C11A—C12A—C13A 1.4 (6) C10B—C11B—C12B—C13B −0.2 (6)
C11A—C12A—C13A—C14A −1.1 (6) C11B—C12B—C13B—C14B 1.5 (6)
C12A—C13A—C14A—C9A 0.5 (6) C10B—C9B—C14B—C13B 2.6 (6)
C10A—C9A—C14A—C13A −0.3 (6) C8B—C9B—C14B—C13B 178.3 (4)
C8A—C9A—C14A—C13A 177.6 (4) C12B—C13B—C14B—C9B −2.7 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2A—H2NA···O2Ai 0.91 1.95 2.857 (4) 170
N2B—H2NB···O2Bii 0.73 2.17 2.866 (4) 161
C14A—H14A···O2Ai 0.93 2.38 3.108 (5) 135
C14B—H14B···O2Bii 0.93 2.38 3.113 (5) 135
C15A—H15A···N2A 0.96 2.47 2.811 (5) 100
C15A—H15A···O2Ai 0.96 2.58 3.053 (5) 110
C15B—H15D···N2B 0.96 2.44 2.812 (5) 103
C15B—H15D···O2Bii 0.96 2.45 3.038 (5) 120
C1A—H1AA···Cg1ii 0.93 2.96 3.729 (4) 141
C4A—H4AA···Cg1iii 0.93 2.95 3.724 (5) 141
C1B—H1BA···Cg2i 0.93 2.88 3.726 (4) 141
C10A—H10A···Cg3iv 0.93 3.31 3.993 (4) 132
C10B—H10B···Cg4v 0.93 3.16 3.847 (4) 132
C4B—H4BA···Cg2vi 0.93 2.94 3.714 (4) 141
C13A—H13A···Cg3i 0.93 3.05 3.674 (4) 126
C13B—H13B···Cg4ii 0.93 3.07 3.755 (4) 132

Symmetry codes: (i) x+1/2, −y, z; (ii) x+1/2, −y+1, z; (iii) x−1/2, −y, z; (iv) x−1/2, −y−1, z; (v) x−1/2, −y+2, z; (vi) x−1/2, −y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2108).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Bratenko, M. K., Chornous, V. A., Voloshin, N. P. & Vovk, M. V. (1999). Chem. Heterocycl. Compd, 35, 1075–1077.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Raj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem.42, 425–429. [DOI] [PubMed]
  5. Rollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171–174. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  8. Sridhar, R. & Perumal, P. T. (2003). Syn. Commun.33, 1483–1488.
  9. Zhang, X., Wei, H.-L., Liu, W.-S., Wang, D.-Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett.17, 3774–3777. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808029218/si2108sup1.cif

e-64-o1961-sup1.cif (25.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029218/si2108Isup2.hkl

e-64-o1961-Isup2.hkl (175.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES