Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 13;64(Pt 10):o1910. doi: 10.1107/S1600536808028250

7,7′-(3,3′-Dibenzyl-3H,3′H-4,4′-bi-1,2,3-triazole-5,5′-di­yl)bis­(4-methyl-2H-chromen-2-one)

Jessie A Key a, Christopher W Cairo a, Michael J Ferguson b,*
PMCID: PMC2959342  PMID: 21201119

Abstract

The title compound, a bis-5,5′-triazole, C38H28N6O4, was observed as a side-product from the Sharpless–Meldal click reaction of the corresponding coumarin alkyne and benzyl­azide. Although the compound was present as a minor component, it crystallized in preference to the major product. The two triazole rings are almost orthogonal to each other [dihedral angle = 83.8 (1)°]. However the 4 and 4′ coumarin systems are close to coplanar with their respective triazole rings [23.6 (1) and 15.1 (1)°]. Each of the benzene rings packs approximately face-to-face with the opposing coumarin ring systems, with inter­planar angles of 7.7 (1) and 25.3 (1)° and distances of 3.567 (2) and 3.929 (2) Å between the respective centroids of the opposing rings.

Related literature

Similar 5,5′-bis­triazole structures have been described previously by Angell & Burgess (2007). For the synthesis of related alkyne-modified coumarins, see: Sivakumar et al. (2004); Zhou & Fahrni (2004).graphic file with name e-64-o1910-scheme1.jpg

Experimental

Crystal data

  • C38H28N6O4

  • M r = 632.66

  • Monoclinic, Inline graphic

  • a = 12.4328 (17) Å

  • b = 17.565 (2) Å

  • c = 14.456 (2) Å

  • β = 94.573 (3)°

  • V = 3147.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 193 (2) K

  • 0.36 × 0.19 × 0.06 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.969, T max = 0.995

  • 21410 measured reflections

  • 5703 independent reflections

  • 3222 reflections with I > 2σ(I)

  • R int = 0.074

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.114

  • S = 1.00

  • 5703 reflections

  • 435 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808028250/fb2110sup1.cif

e-64-o1910-sup1.cif (28.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028250/fb2110Isup2.hkl

e-64-o1910-Isup2.hkl (279.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.95 2.45 3.292 (3) 148
C33—H33B⋯O2ii 0.99 2.33 3.307 (3) 168
C10—H10C⋯O4iii 0.98 2.52 3.337 (4) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Natural Science and Engineering Research Council of Canada, the Alberta Ingen­uity Centre for Carbohydrate Science and the University of Alberta.

supplementary crystallographic information

Comment

In our studies of new synthetic fluorophores through modification of a common fluorophore structure 4-methyl-unbelliferone (II), we generated new alkyne containing profluorophores. We subjected alkyne-modified coumarin structure (III) to conditions typical in a Sharpless–Meldal click reaction with the intention of forming the corresponding 1,2,3-triazole (IV). We explored several conditions for the synthesis of (IV), and obtained reasonable yields with (III) and benzyl azide when reacted with CuI and TEA in a methanol:water mixture. In some of these reactions we observed a minor side-product (23%) evidenced by the appearance of two doublet peaks between 4–5 ppm in the 1H NMR spectrum. These resonances were attributed to the benzylic hydrogen atoms of a bis-5,5'-triazole structure (I), and the presence of this side product was confirmed by the accompanying crystal structure data. This type of side product was first reported by Angell & Burgess (2007). Those authors reported similar observations by 1H NMR and crystallography of the bis-triazole adduct. We have identified improved conditions that avoid formation of the bis-triazole, however it is notable that commonly used conditions for click reactions may produce this type of side product.

Experimental

Synthesis of triazole (IV): The alkyne, (III) (1 equiv), and benzyl azide (4–5 equiv) were dissolved in a 1:1 solution of methanol:water (0.03 M alkyne). CuI (0.2 equiv) was then added, followed by triethylamine (TEA) (2 equiv). The reaction proceeded at room temperature and was monitored by thin layer chromatography. The reaction was complete within 2–3 h. The crude product was concentrated in vacuo, extracted with chloroform and purified by flash column chromatography (CH2Cl2/MeOH), a small amount of the bis-5,5'-triazole (I) was present (23%). The mixture of I and IV was dissolved in 200 µl chloroform, followed by 800 µl of hexanes. Suitable crystals were obtained after two weeks. The crystals were used for determination of the X-ray structure. The original product mixture, 77:23 of IV and I, was used for NMR and MS analysis. 1H NMR (400 MHz, CDCl3):** δ 7.85 (dd, 1H, 3J = 10.8 Hz, 4J = 2.1 Hz), 7.76 (s, 1H), 7.67 (d, 1H, 4J = 2.1 Hz), 7.64 (d, 1H, 3J = 10.8 Hz), 7.43- 7.32 (m, 7H), 7.22 (d, 1H, 4J = 1.6 Hz), 7.05 (m, 2H)I, 6.68 (m, 1H)I, 6.29 (d, 1H, 4J = 1 Hz), 6.26 (d, 0.5H, 4J = 1.6 Hz), 5.61 (s, 2H), 4.88 (d, 0.7H, 3J = 15.2 Hz)I, 4.63 (d, 0.7H, 3J = 15.2 Hz)I, 2.45 (s, 3H), 2.37 (s, 1.5H)I. APT 13C NMR (100 MHz, CDCl3): δ 160.7, 160.3, 153.9, 153.5, 152.0, 151.6, 134.3, 132.6, 132.3, 129.3, 129.0, 128.8, 128.6, 128.2, 128.0, 125.2, 121.5, 121.3, 120.1, 119.6, 115.5, 115.0, 113.8, 113.6, 54.5, 53.0, 18.6, 18.5. HRMS calculated for C38H28N6O4: 632.22; observed: 632.21768 ([2M-2H]+). HRMS calculated for C19H15N3O2: 317.12; observed: 340.11635 ([M+Na]+). Rf = 0.68 (10:1 CH2Cl2/MeOH). **NMR peaks attributed to compound I are denoted by a superscript, and were not observed in purified samples of IV.

Refinement

All the hydrogen atoms could have been discerned in the difference electron density map, nevertheless, all the H atoms were generated in idealized positions and then refined using a riding model with fixed C—H distances (Caryl = 0.95 Å, Cmethyl = 0.98 Å, Cmethylene = 0.99 Å) and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Perspective view of (I) showing the atom labelling scheme. Non-hydrogen atoms are represented by Gaussian ellipsoids at the 20% probability level. Hydrogen atoms are not shown.

Fig. 2.

Fig. 2.

Compounds used in this study.

Crystal data

C38H28N6O4 F(000) = 1320
Mr = 632.66 Dx = 1.335 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2863 reflections
a = 12.4328 (17) Å θ = 2.3–20.4°
b = 17.565 (2) Å µ = 0.09 mm1
c = 14.456 (2) Å T = 193 K
β = 94.573 (3)° Plate, colourless
V = 3147.0 (7) Å3 0.36 × 0.19 × 0.06 mm
Z = 4

Data collection

Bruker PLATFORM diffractometer/SMART 1000 CCD area-detector 5703 independent reflections
Radiation source: fine-focus sealed tube 3222 reflections with I > 2σ(I)
graphite Rint = 0.074
Detector resolution: 8.192 pixels mm-1 θmax = 25.3°, θmin = 1.6°
ω scans h = −14→14
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) k = −21→21
Tmin = 0.969, Tmax = 0.995 l = −17→17
21410 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: difference Fourier map
wR(F2) = 0.114 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0383P)2 + 0.7089P] where P = (Fo2 + 2Fc2)/3
5703 reflections (Δ/σ)max < 0.001
435 parameters Δρmax = 0.15 e Å3
0 restraints Δρmin = −0.16 e Å3
110 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.04554 (13) 0.38038 (9) 0.61080 (10) 0.0487 (4)
O2 −0.11506 (15) 0.35827 (9) 0.74362 (12) 0.0611 (5)
O3 0.40923 (16) 0.24278 (11) 0.23341 (13) 0.0765 (6)
O4 0.5627 (2) 0.20011 (15) 0.29991 (18) 0.1143 (9)
N1 0.22902 (15) 0.49591 (11) 0.24171 (13) 0.0435 (5)
N2 0.27468 (17) 0.50775 (12) 0.32747 (14) 0.0529 (6)
N3 0.21771 (16) 0.47016 (11) 0.38566 (13) 0.0493 (5)
N4 −0.01392 (15) 0.46189 (10) 0.12514 (12) 0.0399 (5)
N5 −0.05450 (16) 0.42958 (11) 0.04549 (13) 0.0460 (5)
N6 0.00981 (16) 0.37304 (11) 0.02675 (13) 0.0441 (5)
C1 −0.1166 (2) 0.34162 (14) 0.66209 (18) 0.0479 (6)
C2 −0.18458 (19) 0.28631 (13) 0.61442 (17) 0.0471 (6)
H2 −0.2375 0.2616 0.6476 0.056*
C3 −0.17758 (19) 0.26742 (13) 0.52525 (17) 0.0431 (6)
C4 −0.09753 (18) 0.30559 (12) 0.47449 (15) 0.0389 (6)
C5 −0.0778 (2) 0.28938 (13) 0.38278 (16) 0.0466 (6)
H5 −0.1172 0.2498 0.3507 0.056*
C6 −0.00257 (19) 0.32950 (13) 0.33810 (16) 0.0455 (6)
H6 0.0097 0.3171 0.2759 0.055*
C7 0.05606 (18) 0.38843 (12) 0.38319 (15) 0.0381 (6)
C8 0.03910 (18) 0.40452 (12) 0.47489 (15) 0.0407 (6)
H8 0.0785 0.4440 0.5071 0.049*
C9 −0.03566 (18) 0.36255 (13) 0.51869 (15) 0.0392 (6)
C10 −0.2493 (2) 0.20886 (15) 0.47772 (18) 0.0610 (8)
H10A −0.2972 0.1877 0.5219 0.073*
H10B −0.2052 0.1680 0.4543 0.073*
H10C −0.2927 0.2324 0.4258 0.073*
C11 0.13516 (18) 0.43373 (12) 0.33611 (15) 0.0392 (6)
C12 0.14149 (18) 0.44964 (12) 0.24347 (15) 0.0368 (5)
C13 0.27160 (19) 0.53422 (14) 0.16239 (16) 0.0487 (7)
H13A 0.3156 0.5784 0.1852 0.058*
H13B 0.2105 0.5539 0.1211 0.058*
C14 0.33957 (19) 0.48340 (14) 0.10704 (18) 0.0476 (6)
C15 0.3150 (2) 0.47500 (15) 0.01346 (18) 0.0556 (7)
H15 0.2546 0.5013 −0.0155 0.067*
C16 0.3761 (2) 0.42923 (18) −0.0396 (2) 0.0715 (9)
H16 0.3577 0.4244 −0.1044 0.086*
C17 0.4629 (3) 0.39096 (18) 0.0011 (3) 0.0779 (10)
H17 0.5043 0.3586 −0.0349 0.094*
C18 0.4899 (2) 0.3996 (2) 0.0946 (3) 0.0861 (10)
H18 0.5512 0.3738 0.1228 0.103*
C19 0.4289 (2) 0.44567 (18) 0.1482 (2) 0.0715 (9)
H19 0.4482 0.4513 0.2128 0.086*
C21 0.5019 (3) 0.19979 (19) 0.2306 (3) 0.0810 (10)
C22 0.5171 (2) 0.16063 (18) 0.1459 (3) 0.0800 (10)
H22 0.5796 0.1299 0.1431 0.096*
C23 0.4479 (2) 0.16503 (17) 0.0704 (2) 0.0717 (9)
C24 0.3521 (2) 0.21249 (15) 0.07429 (19) 0.0562 (7)
C25 0.2752 (2) 0.22437 (16) 0.0006 (2) 0.0631 (8)
H25 0.2817 0.1980 −0.0561 0.076*
C26 0.1900 (2) 0.27323 (14) 0.00755 (18) 0.0528 (7)
H26 0.1389 0.2806 −0.0441 0.063*
C27 0.17829 (19) 0.31216 (13) 0.09072 (16) 0.0431 (6)
C28 0.2519 (2) 0.29845 (14) 0.16581 (17) 0.0512 (7)
H28 0.2434 0.3224 0.2237 0.061*
C29 0.3372 (2) 0.25008 (15) 0.15623 (19) 0.0537 (7)
C30 0.4669 (3) 0.1241 (2) −0.0173 (2) 0.1060 (13)
H30A 0.5311 0.0919 −0.0072 0.127*
H30B 0.4779 0.1613 −0.0663 0.127*
H30C 0.4042 0.0924 −0.0361 0.127*
C31 0.09201 (18) 0.36899 (13) 0.09483 (15) 0.0382 (6)
C32 0.07816 (17) 0.42608 (12) 0.15855 (15) 0.0364 (5)
C33 −0.07212 (19) 0.52408 (13) 0.16521 (17) 0.0481 (6)
H33A −0.1075 0.5553 0.1145 0.058*
H33B −0.0200 0.5570 0.2018 0.058*
C34 −0.1562 (2) 0.49688 (16) 0.22682 (16) 0.0492 (7)
C35 −0.1863 (3) 0.5442 (2) 0.2960 (2) 0.0877 (11)
H35 −0.1547 0.5933 0.3036 0.105*
C36 −0.2617 (3) 0.5209 (3) 0.3541 (3) 0.1298 (18)
H36 −0.2814 0.5536 0.4022 0.156*
C37 −0.3088 (3) 0.4506 (3) 0.3432 (3) 0.1210 (17)
H37 −0.3612 0.4349 0.3837 0.145*
C38 −0.2809 (3) 0.4032 (2) 0.2748 (2) 0.0917 (11)
H38 −0.3137 0.3546 0.2667 0.110*
C39 −0.2042 (2) 0.42693 (18) 0.2171 (2) 0.0676 (8)
H39 −0.1842 0.3938 0.1694 0.081*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0625 (12) 0.0467 (10) 0.0383 (10) −0.0123 (9) 0.0128 (9) −0.0055 (8)
O2 0.0865 (14) 0.0564 (11) 0.0424 (11) −0.0080 (10) 0.0177 (10) −0.0004 (9)
O3 0.0629 (13) 0.0901 (15) 0.0732 (14) 0.0306 (11) −0.0150 (11) −0.0122 (11)
O4 0.0845 (18) 0.139 (2) 0.112 (2) 0.0492 (16) −0.0406 (16) −0.0220 (16)
N1 0.0425 (12) 0.0502 (12) 0.0374 (12) −0.0082 (10) 0.0017 (10) 0.0042 (10)
N2 0.0550 (14) 0.0602 (14) 0.0424 (13) −0.0147 (11) −0.0027 (11) 0.0027 (11)
N3 0.0523 (13) 0.0551 (13) 0.0399 (12) −0.0127 (11) 0.0001 (11) 0.0015 (10)
N4 0.0404 (12) 0.0449 (12) 0.0346 (11) 0.0009 (10) 0.0040 (9) −0.0021 (9)
N5 0.0431 (12) 0.0550 (13) 0.0394 (12) 0.0023 (11) 0.0005 (10) −0.0043 (10)
N6 0.0412 (12) 0.0510 (13) 0.0402 (12) 0.0007 (10) 0.0041 (10) −0.0037 (10)
C1 0.0574 (17) 0.0426 (15) 0.0453 (16) 0.0012 (13) 0.0138 (14) 0.0065 (13)
C2 0.0447 (15) 0.0447 (15) 0.0531 (17) −0.0056 (12) 0.0114 (13) 0.0038 (13)
C3 0.0409 (15) 0.0391 (14) 0.0489 (16) −0.0003 (11) 0.0011 (13) 0.0037 (12)
C4 0.0406 (14) 0.0353 (13) 0.0404 (15) −0.0026 (11) 0.0015 (12) 0.0006 (11)
C5 0.0547 (17) 0.0436 (14) 0.0410 (15) −0.0109 (13) −0.0008 (13) −0.0043 (12)
C6 0.0561 (16) 0.0476 (15) 0.0330 (14) −0.0081 (13) 0.0046 (12) −0.0033 (12)
C7 0.0397 (14) 0.0379 (14) 0.0363 (14) 0.0004 (11) 0.0012 (11) 0.0023 (11)
C8 0.0479 (15) 0.0370 (13) 0.0372 (14) −0.0084 (11) 0.0026 (12) −0.0043 (11)
C9 0.0446 (15) 0.0386 (14) 0.0345 (14) 0.0011 (12) 0.0041 (12) −0.0010 (11)
C10 0.0523 (17) 0.0643 (18) 0.0657 (19) −0.0200 (14) 0.0005 (14) 0.0008 (15)
C11 0.0421 (14) 0.0406 (14) 0.0344 (14) −0.0030 (11) 0.0007 (12) −0.0031 (11)
C12 0.0360 (14) 0.0363 (13) 0.0381 (14) −0.0015 (11) 0.0036 (11) 0.0005 (11)
C13 0.0465 (15) 0.0547 (16) 0.0452 (15) −0.0101 (13) 0.0066 (12) 0.0112 (12)
C14 0.0345 (14) 0.0573 (17) 0.0516 (17) −0.0077 (12) 0.0069 (13) 0.0111 (13)
C15 0.0486 (17) 0.0635 (18) 0.0550 (18) −0.0015 (14) 0.0052 (14) 0.0027 (14)
C16 0.065 (2) 0.085 (2) 0.066 (2) −0.0007 (18) 0.0158 (17) −0.0099 (17)
C17 0.063 (2) 0.078 (2) 0.098 (3) 0.0030 (18) 0.038 (2) 0.003 (2)
C18 0.050 (2) 0.105 (3) 0.105 (3) 0.0202 (18) 0.020 (2) 0.028 (2)
C19 0.0469 (18) 0.102 (2) 0.066 (2) 0.0033 (17) 0.0075 (16) 0.0221 (18)
C21 0.056 (2) 0.090 (2) 0.094 (3) 0.0247 (18) −0.015 (2) −0.013 (2)
C22 0.0467 (19) 0.085 (2) 0.107 (3) 0.0192 (17) 0.002 (2) −0.019 (2)
C23 0.0444 (18) 0.078 (2) 0.093 (2) 0.0118 (16) 0.0065 (18) −0.0228 (18)
C24 0.0391 (16) 0.0618 (18) 0.0676 (19) 0.0048 (13) 0.0034 (15) −0.0201 (15)
C25 0.0468 (17) 0.078 (2) 0.0645 (19) 0.0038 (15) 0.0040 (15) −0.0303 (16)
C26 0.0409 (16) 0.0644 (18) 0.0525 (16) 0.0019 (13) 0.0008 (13) −0.0155 (14)
C27 0.0366 (14) 0.0470 (15) 0.0465 (16) −0.0010 (12) 0.0077 (12) −0.0043 (12)
C28 0.0515 (17) 0.0579 (17) 0.0440 (16) 0.0123 (14) 0.0022 (13) −0.0056 (13)
C29 0.0421 (16) 0.0593 (17) 0.0580 (17) 0.0070 (14) −0.0062 (14) −0.0075 (14)
C30 0.067 (2) 0.133 (3) 0.119 (3) 0.039 (2) 0.010 (2) −0.050 (3)
C31 0.0336 (13) 0.0461 (14) 0.0349 (13) −0.0026 (11) 0.0030 (12) 0.0006 (11)
C32 0.0331 (13) 0.0413 (14) 0.0348 (13) −0.0030 (11) 0.0035 (11) 0.0029 (11)
C33 0.0495 (16) 0.0463 (15) 0.0480 (15) 0.0070 (12) −0.0002 (13) −0.0058 (12)
C34 0.0443 (15) 0.0636 (18) 0.0394 (15) 0.0143 (14) 0.0004 (12) 0.0009 (13)
C35 0.064 (2) 0.127 (3) 0.074 (2) 0.009 (2) 0.0146 (18) −0.041 (2)
C36 0.081 (3) 0.230 (6) 0.082 (3) 0.004 (3) 0.032 (2) −0.061 (3)
C37 0.073 (3) 0.220 (6) 0.075 (3) −0.006 (3) 0.037 (2) 0.009 (3)
C38 0.071 (2) 0.123 (3) 0.085 (3) 0.004 (2) 0.029 (2) 0.025 (2)
C39 0.065 (2) 0.074 (2) 0.067 (2) 0.0103 (17) 0.0268 (16) 0.0103 (16)

Geometric parameters (Å, °)

O1—C1 1.378 (3) C15—H15 0.9500
O1—C9 1.383 (2) C16—C17 1.364 (4)
O2—C1 1.213 (3) C16—H16 0.9500
O3—C29 1.380 (3) C17—C18 1.374 (4)
O3—C21 1.381 (3) C17—H17 0.9500
O4—C21 1.206 (3) C18—C19 1.388 (4)
N1—N2 1.338 (2) C18—H18 0.9500
N1—C12 1.360 (3) C19—H19 0.9500
N1—C13 1.465 (3) C21—C22 1.431 (4)
N2—N3 1.319 (2) C22—C23 1.337 (4)
N3—C11 1.363 (3) C22—H22 0.9500
N4—N5 1.345 (2) C23—C24 1.459 (4)
N4—C32 1.361 (3) C23—C30 1.493 (4)
N4—C33 1.456 (3) C24—C29 1.381 (3)
N5—N6 1.317 (2) C24—C25 1.390 (3)
N6—C31 1.363 (3) C25—C26 1.374 (3)
C1—C2 1.428 (3) C25—H25 0.9500
C2—C3 1.341 (3) C26—C27 1.401 (3)
C2—H2 0.9500 C26—H26 0.9500
C3—C4 1.447 (3) C27—C28 1.384 (3)
C3—C10 1.493 (3) C27—C31 1.470 (3)
C4—C9 1.387 (3) C28—C29 1.375 (3)
C4—C5 1.397 (3) C28—H28 0.9500
C5—C6 1.373 (3) C30—H30A 0.9800
C5—H5 0.9500 C30—H30B 0.9800
C6—C7 1.397 (3) C30—H30C 0.9800
C6—H6 0.9500 C31—C32 1.382 (3)
C7—C8 1.388 (3) C33—C34 1.504 (3)
C7—C11 1.473 (3) C33—H33A 0.9900
C8—C9 1.379 (3) C33—H33B 0.9900
C8—H8 0.9500 C34—C39 1.368 (4)
C10—H10A 0.9800 C34—C35 1.376 (4)
C10—H10B 0.9800 C35—C36 1.370 (5)
C10—H10C 0.9800 C35—H35 0.9500
C11—C12 1.376 (3) C36—C37 1.371 (6)
C12—C32 1.464 (3) C36—H36 0.9500
C13—C14 1.503 (3) C37—C38 1.359 (5)
C13—H13A 0.9900 C37—H37 0.9500
C13—H13B 0.9900 C38—C39 1.381 (4)
C14—C15 1.371 (3) C38—H38 0.9500
C14—C19 1.387 (4) C39—H39 0.9500
C15—C16 1.380 (4)
C1—O1—C9 121.08 (19) C17—C18—C19 120.8 (3)
C29—O3—C21 121.1 (2) C17—C18—H18 119.6
N2—N1—C12 110.89 (18) C19—C18—H18 119.6
N2—N1—C13 120.06 (19) C14—C19—C18 119.6 (3)
C12—N1—C13 129.0 (2) C14—C19—H19 120.2
N3—N2—N1 107.66 (18) C18—C19—H19 120.2
N2—N3—C11 108.65 (18) O4—C21—O3 116.3 (3)
N5—N4—C32 110.87 (18) O4—C21—C22 126.7 (3)
N5—N4—C33 119.52 (19) O3—C21—C22 117.1 (3)
C32—N4—C33 129.53 (19) C23—C22—C21 123.4 (3)
N6—N5—N4 107.57 (18) C23—C22—H22 118.3
N5—N6—C31 108.87 (18) C21—C22—H22 118.3
O2—C1—O1 116.3 (2) C22—C23—C24 118.4 (3)
O2—C1—C2 126.6 (2) C22—C23—C30 122.1 (3)
O1—C1—C2 117.2 (2) C24—C23—C30 119.5 (3)
C3—C2—C1 123.4 (2) C29—C24—C25 117.1 (2)
C3—C2—H2 118.3 C29—C24—C23 118.2 (3)
C1—C2—H2 118.3 C25—C24—C23 124.8 (3)
C2—C3—C4 118.2 (2) C26—C25—C24 121.7 (2)
C2—C3—C10 122.1 (2) C26—C25—H25 119.2
C4—C3—C10 119.7 (2) C24—C25—H25 119.2
C9—C4—C5 116.8 (2) C25—C26—C27 120.1 (2)
C9—C4—C3 118.6 (2) C25—C26—H26 119.9
C5—C4—C3 124.5 (2) C27—C26—H26 120.0
C6—C5—C4 121.3 (2) C28—C27—C26 118.8 (2)
C6—C5—H5 119.3 C28—C27—C31 121.7 (2)
C4—C5—H5 119.3 C26—C27—C31 119.5 (2)
C5—C6—C7 120.7 (2) C29—C28—C27 119.7 (2)
C5—C6—H6 119.7 C29—C28—H28 120.1
C7—C6—H6 119.7 C27—C28—H28 120.1
C8—C7—C6 118.9 (2) C28—C29—O3 115.6 (2)
C8—C7—C11 119.3 (2) C28—C29—C24 122.6 (2)
C6—C7—C11 121.8 (2) O3—C29—C24 121.8 (2)
C9—C8—C7 119.3 (2) C23—C30—H30A 109.5
C9—C8—H8 120.4 C23—C30—H30B 109.5
C7—C8—H8 120.4 H30A—C30—H30B 109.5
C8—C9—O1 115.8 (2) C23—C30—H30C 109.5
C8—C9—C4 122.9 (2) H30A—C30—H30C 109.5
O1—C9—C4 121.2 (2) H30B—C30—H30C 109.5
C3—C10—H10A 109.5 N6—C31—C32 108.5 (2)
C3—C10—H10B 109.5 N6—C31—C27 120.9 (2)
H10A—C10—H10B 109.5 C32—C31—C27 130.5 (2)
C3—C10—H10C 109.5 N4—C32—C31 104.18 (19)
H10A—C10—H10C 109.5 N4—C32—C12 123.2 (2)
H10B—C10—H10C 109.5 C31—C32—C12 132.6 (2)
N3—C11—C12 108.5 (2) N4—C33—C34 112.85 (19)
N3—C11—C7 120.9 (2) N4—C33—H33A 109.0
C12—C11—C7 130.6 (2) C34—C33—H33A 109.0
N1—C12—C11 104.33 (19) N4—C33—H33B 109.0
N1—C12—C32 122.06 (19) C34—C33—H33B 109.0
C11—C12—C32 133.6 (2) H33A—C33—H33B 107.8
N1—C13—C14 113.43 (19) C39—C34—C35 118.4 (3)
N1—C13—H13A 108.9 C39—C34—C33 122.8 (2)
C14—C13—H13A 108.9 C35—C34—C33 118.7 (3)
N1—C13—H13B 108.9 C36—C35—C34 120.2 (4)
C14—C13—H13B 108.9 C36—C35—H35 119.9
H13A—C13—H13B 107.7 C34—C35—H35 119.9
C15—C14—C19 118.7 (3) C35—C36—C37 120.5 (4)
C15—C14—C13 119.9 (2) C35—C36—H36 119.8
C19—C14—C13 121.4 (2) C37—C36—H36 119.8
C14—C15—C16 121.5 (3) C38—C37—C36 120.2 (4)
C14—C15—H15 119.3 C38—C37—H37 119.9
C16—C15—H15 119.3 C36—C37—H37 119.9
C17—C16—C15 119.9 (3) C37—C38—C39 119.0 (4)
C17—C16—H16 120.0 C37—C38—H38 120.5
C15—C16—H16 120.0 C39—C38—H38 120.5
C16—C17—C18 119.5 (3) C34—C39—C38 121.7 (3)
C16—C17—H17 120.3 C34—C39—H39 119.2
C18—C17—H17 120.3 C38—C39—H39 119.2
C12—N1—N2—N3 −0.4 (3) C17—C18—C19—C14 0.0 (5)
C13—N1—N2—N3 176.64 (19) C29—O3—C21—O4 176.2 (3)
N1—N2—N3—C11 0.3 (3) C29—O3—C21—C22 −2.8 (4)
C32—N4—N5—N6 0.2 (2) O4—C21—C22—C23 −177.5 (4)
C33—N4—N5—N6 −176.94 (18) O3—C21—C22—C23 1.4 (5)
N4—N5—N6—C31 0.1 (2) C21—C22—C23—C24 0.3 (5)
C9—O1—C1—O2 175.8 (2) C21—C22—C23—C30 179.2 (3)
C9—O1—C1—C2 −4.3 (3) C22—C23—C24—C29 −0.5 (4)
O2—C1—C2—C3 −175.8 (3) C30—C23—C24—C29 −179.5 (3)
O1—C1—C2—C3 4.3 (4) C22—C23—C24—C25 177.9 (3)
C1—C2—C3—C4 −0.5 (4) C30—C23—C24—C25 −1.1 (5)
C1—C2—C3—C10 179.5 (2) C29—C24—C25—C26 2.1 (4)
C2—C3—C4—C9 −3.3 (3) C23—C24—C25—C26 −176.3 (3)
C10—C3—C4—C9 176.7 (2) C24—C25—C26—C27 −0.5 (4)
C2—C3—C4—C5 177.0 (2) C25—C26—C27—C28 −2.1 (4)
C10—C3—C4—C5 −3.0 (4) C25—C26—C27—C31 174.9 (2)
C9—C4—C5—C6 −1.6 (3) C26—C27—C28—C29 3.1 (4)
C3—C4—C5—C6 178.1 (2) C31—C27—C28—C29 −173.9 (2)
C4—C5—C6—C7 −0.5 (4) C27—C28—C29—O3 177.0 (2)
C5—C6—C7—C8 1.7 (3) C27—C28—C29—C24 −1.5 (4)
C5—C6—C7—C11 −178.3 (2) C21—O3—C29—C28 −175.8 (3)
C6—C7—C8—C9 −0.6 (3) C21—O3—C29—C24 2.7 (4)
C11—C7—C8—C9 179.4 (2) C25—C24—C29—C28 −1.1 (4)
C7—C8—C9—O1 178.1 (2) C23—C24—C29—C28 177.4 (3)
C7—C8—C9—C4 −1.7 (3) C25—C24—C29—O3 −179.4 (2)
C1—O1—C9—C8 −179.2 (2) C23—C24—C29—O3 −1.0 (4)
C1—O1—C9—C4 0.6 (3) N5—N6—C31—C32 −0.3 (2)
C5—C4—C9—C8 2.8 (3) N5—N6—C31—C27 −178.29 (19)
C3—C4—C9—C8 −177.0 (2) C28—C27—C31—N6 −168.9 (2)
C5—C4—C9—O1 −176.9 (2) C26—C27—C31—N6 14.2 (3)
C3—C4—C9—O1 3.3 (3) C28—C27—C31—C32 13.6 (4)
N2—N3—C11—C12 −0.1 (3) C26—C27—C31—C32 −163.3 (2)
N2—N3—C11—C7 −178.5 (2) N5—N4—C32—C31 −0.4 (2)
C8—C7—C11—N3 24.2 (3) C33—N4—C32—C31 176.4 (2)
C6—C7—C11—N3 −155.8 (2) N5—N4—C32—C12 178.81 (19)
C8—C7—C11—C12 −153.9 (2) C33—N4—C32—C12 −4.4 (3)
C6—C7—C11—C12 26.2 (4) N6—C31—C32—N4 0.4 (2)
N2—N1—C12—C11 0.3 (2) C27—C31—C32—N4 178.1 (2)
C13—N1—C12—C11 −176.4 (2) N6—C31—C32—C12 −178.6 (2)
N2—N1—C12—C32 −178.5 (2) C27—C31—C32—C12 −0.9 (4)
C13—N1—C12—C32 4.8 (3) N1—C12—C32—N4 −96.3 (3)
N3—C11—C12—N1 −0.2 (2) C11—C12—C32—N4 85.2 (3)
C7—C11—C12—N1 178.1 (2) N1—C12—C32—C31 82.6 (3)
N3—C11—C12—C32 178.5 (2) C11—C12—C32—C31 −95.9 (3)
C7—C11—C12—C32 −3.3 (4) N5—N4—C33—C34 86.5 (2)
N2—N1—C13—C14 102.5 (2) C32—N4—C33—C34 −90.0 (3)
C12—N1—C13—C14 −81.1 (3) N4—C33—C34—C39 −25.5 (3)
N1—C13—C14—C15 125.2 (2) N4—C33—C34—C35 154.5 (2)
N1—C13—C14—C19 −56.2 (3) C39—C34—C35—C36 0.8 (5)
C19—C14—C15—C16 1.0 (4) C33—C34—C35—C36 −179.2 (3)
C13—C14—C15—C16 179.5 (2) C34—C35—C36—C37 −0.8 (6)
C14—C15—C16—C17 0.2 (4) C35—C36—C37—C38 0.2 (7)
C15—C16—C17—C18 −1.3 (5) C36—C37—C38—C39 0.4 (6)
C16—C17—C18—C19 1.2 (5) C35—C34—C39—C38 −0.2 (4)
C15—C14—C19—C18 −1.1 (4) C33—C34—C39—C38 179.8 (3)
C13—C14—C19—C18 −179.6 (2) C37—C38—C39—C34 −0.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5···O2i 0.95 2.45 3.292 (3) 148.
C33—H33B···O2ii 0.99 2.33 3.307 (3) 168.
C10—H10C···O4iii 0.98 2.52 3.337 (4) 141.

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, −y+1, −z+1; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2110).

References

  1. Angell, Y. & Burgess, K. (2007). Angew. Chem. Int. Ed.46, 3649–3651. [DOI] [PubMed]
  2. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Sivakumar, K., Xie, F., Cash, B. M., Long, S., Barnhill, H. N. & Wang, Q. (2004). Org. Lett. 6, 4603–4606. [DOI] [PubMed]
  6. Zhou, Z. & Fahrni, C. J. (2004). J. Am. Chem. Soc.126, 8862–8863. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808028250/fb2110sup1.cif

e-64-o1910-sup1.cif (28.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028250/fb2110Isup2.hkl

e-64-o1910-Isup2.hkl (279.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES