Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 6;64(Pt 10):o1894. doi: 10.1107/S1600536808028122

N,N′-Bis(4-bromo­benzyl­idene)butane-1,4-diamine

Hoong-Kun Fun a,*, Hadi Kargar b,, Reza Kia a
PMCID: PMC2959343  PMID: 21201106

Abstract

The mol­ecule of the title Schiff base compound, C18H18Br2N2, lies across a crystallographic inversion centre and adopts an E configuration with respect to the C=N bond. In the crystal structure, mol­ecules are linked into chains along [201] through inter­molecular Br⋯Br inter­actions [3.3747 (3) Å], which are significantly shorter than the sum of the van der Waals radii for Br atoms (3.70 Å). The crystal structure is further stabilized by π–π stacking inter­actions [centroid–centroid distance 3.6811 (11) Å].

Related literature

For halogen–halogen inter­actions, see: Ramasubbu et al. (1986); Brammer et al. (2003). For the crystal structures of related compounds, see: Fun et al. (2008); Fun, Kia & Kargar (2008a ,b ); Fun & Kia (2008a ,b ). For bond-length data, see: Allen et al. (1987). For hydrogen-bondong motifs, see: Bernstein et al. (1995). For background, see: Casellato & Vigato (1977).graphic file with name e-64-o1894-scheme1.jpg

Experimental

Crystal data

  • C18H18Br2N2

  • M r = 422.16

  • Monoclinic, Inline graphic

  • a = 11.2612 (5) Å

  • b = 9.5213 (4) Å

  • c = 8.2645 (4) Å

  • β = 100.040 (3)°

  • V = 872.56 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.64 mm−1

  • T = 100.0 (1) K

  • 0.52 × 0.23 × 0.08 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.192, T max = 0.688

  • 15460 measured reflections

  • 3843 independent reflections

  • 2600 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.092

  • S = 1.02

  • 3843 reflections

  • 136 parameters

  • All H-atom parameters refined

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808028122/rz2242sup1.cif

e-64-o1894-sup1.cif (13.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028122/rz2242Isup2.hkl

e-64-o1894-Isup2.hkl (188.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund (grant No. 305/PFIZIK/613312). RK thanks Universiti Sains Malaysia for the award of a postdoctoral research fellowship. HK thanks PNU for financial support.

supplementary crystallographic information

Comment

The condensation of primary amines with carbonyl compounds yields Schiff bases (Casellato & Vigato, 1977) that are still one of the most prevalent mixed-donor ligand in coordination chemistry. In the past two decades, the synthesis, structure and properties of Schiff base complexes have stimulated much interest for their noteworthy contributions in single molecule-based magnetism, materials science, catalysis of many reactions like carbonylation, hydroformylation, reduction, oxidation, epoxidation and hydrolysis (Casellato & Vigato 1977). As an extension of our work (Fun et al., 2008; Fun, Kia & Kargar 2008a,b; Fun & Kia 2008a,b) on the structural characterization of Schiff base ligands, the title compound is reported here.

The molecule of the title compound (Fig 1), lies across a crystallographic inversion centre and adopts an E configuration with respect to the C═N bond. The bond lengths (Allen et al., 1987) and angles are within normal ranges. The asymmetric unit of the compound is composed of one-half of the molecule. The imino group is coplanar with the benzene ring. Within the molecule, the planar units are parallel but extend in opposite directions from the methylene bridge. An interesting feature of the crystal structure is the short Br···Br [3.3747 (3) Å] interaction (Fig. 2), which is significantly shorter than the sum of the van der Waals radii for two Br atoms (3.70 Å). The directionality of these interactions, C—X···X—C (X = halogens), has been attributed to anisotropic van der Waals radii for terminally bound halogens or ascribed to donor–acceptor interactions involving a lone pair donor orbital on one halogen and a C—X σ* acceptor orbital on the other (Ramasubbu et al., 1986; Brammer et al., 2003). In the crystal structure, molecules are linked into chains along the [201] direction through the short intermolecular Br···Br interactions (Fig. 2). In addition, the crystal structure is further stabilized by π–π interaction (Fig. 3) with centroid-to-centroid distance of 3.6811 (11) Å, perpendicular interplanar distance of 3.3617 (8) Å, and centroid···centroid offset of 1.4997 (5) Å.

Experimental

The synthetic method has been described earlier (Fun, Kia & Kargar, 2008b). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement

All hydrogen atoms were located from the difference Fourier map and refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms. The suffix A corresponds to symmetry code (-x, -y + 1, -z).

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed down the b axis, showing molecules linked into chains along the [201] direction by short intermolecular Br···Br interactions.

Fig. 3.

Fig. 3.

The crystal packing of the title compound viewed down the b-axis, showing the π–π stacking arrangement of molecules.

Crystal data

C18H18Br2N2 F(000) = 420
Mr = 422.16 Dx = 1.607 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5047 reflections
a = 11.2612 (5) Å θ = 2.8–33.0°
b = 9.5213 (4) Å µ = 4.64 mm1
c = 8.2645 (4) Å T = 100 K
β = 100.040 (3)° Plate, colourless
V = 872.56 (7) Å3 0.52 × 0.23 × 0.08 mm
Z = 2

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3843 independent reflections
Radiation source: fine-focus sealed tube 2600 reflections with I > 2σ(I)
graphite Rint = 0.037
φ and ω scans θmax = 35.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −10→18
Tmin = 0.192, Tmax = 0.688 k = −15→15
15460 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0376P)2 + 0.4289P] where P = (Fo2 + 2Fc2)/3
3843 reflections (Δ/σ)max = 0.001
136 parameters Δρmax = 0.68 e Å3
0 restraints Δρmin = −0.59 e Å3

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.863352 (18) 0.42295 (2) 0.45375 (3) 0.03180 (8)
N1 0.26074 (15) 0.39137 (18) 0.1162 (2) 0.0234 (3)
C1 0.50731 (18) 0.31392 (19) 0.4478 (2) 0.0208 (4)
C2 0.63137 (18) 0.3255 (2) 0.4915 (3) 0.0240 (4)
C3 0.69332 (18) 0.40815 (19) 0.3962 (2) 0.0222 (4)
C4 0.63436 (18) 0.4810 (2) 0.2596 (2) 0.0216 (4)
C5 0.50998 (17) 0.4680 (2) 0.2182 (2) 0.0200 (3)
C6 0.44549 (16) 0.38295 (19) 0.3101 (2) 0.0184 (3)
C7 0.31505 (17) 0.3638 (2) 0.2606 (2) 0.0204 (3)
C8 0.13050 (18) 0.3707 (2) 0.0806 (3) 0.0261 (4)
C9 0.06720 (18) 0.5093 (2) 0.0273 (3) 0.0245 (4)
H1 0.462 (2) 0.260 (3) 0.514 (3) 0.028 (6)*
H2 0.679 (2) 0.273 (3) 0.586 (3) 0.028 (6)*
H4 0.678 (2) 0.540 (3) 0.209 (3) 0.032 (7)*
H5 0.470 (2) 0.515 (3) 0.130 (3) 0.024 (6)*
H7 0.276 (2) 0.330 (2) 0.341 (3) 0.018 (5)*
H8A 0.113 (2) 0.300 (3) −0.016 (3) 0.023 (6)*
H8B 0.1034 (19) 0.336 (2) 0.172 (3) 0.016 (5)*
H9A 0.111 (3) 0.550 (3) −0.053 (4) 0.034 (7)*
H9B 0.092 (3) 0.576 (3) 0.111 (3) 0.033 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.01994 (10) 0.03249 (12) 0.04155 (14) −0.00088 (8) 0.00144 (8) −0.00353 (9)
N1 0.0197 (7) 0.0250 (8) 0.0255 (8) 0.0015 (6) 0.0042 (6) 0.0006 (6)
C1 0.0261 (9) 0.0185 (8) 0.0185 (8) −0.0004 (7) 0.0055 (7) 0.0000 (7)
C2 0.0273 (9) 0.0214 (8) 0.0220 (9) 0.0017 (7) 0.0012 (7) −0.0003 (7)
C3 0.0221 (8) 0.0208 (8) 0.0237 (9) 0.0000 (7) 0.0041 (7) −0.0045 (7)
C4 0.0248 (9) 0.0185 (8) 0.0230 (9) −0.0022 (7) 0.0088 (7) −0.0014 (7)
C5 0.0239 (9) 0.0175 (7) 0.0194 (9) 0.0003 (7) 0.0060 (7) 0.0009 (7)
C6 0.0204 (8) 0.0156 (7) 0.0196 (8) 0.0008 (6) 0.0048 (6) −0.0013 (6)
C7 0.0213 (8) 0.0190 (8) 0.0224 (9) −0.0001 (7) 0.0080 (7) 0.0014 (7)
C8 0.0201 (9) 0.0286 (10) 0.0301 (11) −0.0004 (7) 0.0055 (8) 0.0020 (8)
C9 0.0200 (8) 0.0248 (9) 0.0285 (10) −0.0005 (7) 0.0034 (7) 0.0018 (8)

Geometric parameters (Å, °)

Br1—C3 1.896 (2) C5—C6 1.398 (3)
N1—C7 1.270 (2) C5—H5 0.91 (2)
N1—C8 1.458 (3) C6—C7 1.466 (3)
C1—C2 1.385 (3) C7—H7 0.92 (2)
C1—C6 1.391 (3) C8—C9 1.527 (3)
C1—H1 0.95 (3) C8—H8A 1.04 (2)
C2—C3 1.385 (3) C8—H8B 0.93 (2)
C2—H2 1.00 (3) C9—C9i 1.512 (4)
C3—C4 1.391 (3) C9—H9A 0.97 (3)
C4—C5 1.388 (3) C9—H9B 0.94 (3)
C4—H4 0.90 (3)
C7—N1—C8 117.69 (18) C1—C6—C7 120.26 (18)
C2—C1—C6 120.93 (19) C5—C6—C7 120.70 (17)
C2—C1—H1 120.3 (15) N1—C7—C6 122.12 (18)
C6—C1—H1 118.7 (15) N1—C7—H7 123.0 (14)
C3—C2—C1 118.83 (18) C6—C7—H7 114.8 (14)
C3—C2—H2 118.2 (15) N1—C8—C9 110.13 (18)
C1—C2—H2 122.9 (15) N1—C8—H8A 107.3 (13)
C2—C3—C4 121.89 (18) C9—C8—H8A 108.9 (13)
C2—C3—Br1 119.12 (14) N1—C8—H8B 110.2 (13)
C4—C3—Br1 118.99 (15) C9—C8—H8B 109.9 (14)
C5—C4—C3 118.31 (19) H8A—C8—H8B 110.3 (19)
C5—C4—H4 123.6 (17) C9i—C9—C8 112.2 (2)
C3—C4—H4 117.8 (17) C9i—C9—H9A 116.2 (16)
C4—C5—C6 120.99 (18) C8—C9—H9A 106.1 (16)
C4—C5—H5 119.6 (16) C9i—C9—H9B 116.7 (18)
C6—C5—H5 119.4 (16) C8—C9—H9B 107.8 (16)
C1—C6—C5 119.02 (17) H9A—C9—H9B 96 (2)

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2242).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Brammer, L., Espallargas, M. E. & Adams, H. (2003). CrystEngComm, 5, 343–345.
  4. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Casellato, U. & Vigato, P. A. (1977). Coord. Chem. Rev.23, 31–50.
  6. Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308. [DOI] [PMC free article] [PubMed]
  7. Fun, H.-K. & Kia, R. (2008a). Acta Cryst. E64, m1081–m1082. [DOI] [PMC free article] [PubMed]
  8. Fun, H.-K. & Kia, R. (2008b). Acta Cryst. E64, m1116–m1117. [DOI] [PMC free article] [PubMed]
  9. Fun, H.-K., Kia, R. & Kargar, H. (2008a). Acta Cryst. E64, o1335. [DOI] [PMC free article] [PubMed]
  10. Fun, H.-K., Kia, R. & Kargar, H. (2008b). Acta Cryst. E64, o1855. [DOI] [PMC free article] [PubMed]
  11. Ramasubbu, N., Parthasathy, R. & Murry-Rust, P. (1986). J. Am. Chem. Soc.108, 4308–4314.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808028122/rz2242sup1.cif

e-64-o1894-sup1.cif (13.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028122/rz2242Isup2.hkl

e-64-o1894-Isup2.hkl (188.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES