Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 30;64(Pt 10):o2039. doi: 10.1107/S1600536808030651

tert-Butyl 3-oxo-2-oxa-5-aza­bicyclo­[2.2.1]heptane-5-carboxyl­ate

Marie-Charlotte Lechner a, Emmanuel Aubert b, Gilles Guichard a,, Claude Didierjean b,*
PMCID: PMC2959344  PMID: 21201231

Abstract

The title compound, C10H15NO4, also known as N-tert-butyl­oxycarbonyl-allohydr­oxy-l-proline lactone, is quite similar to N-acetyl-allohydr­oxy-l-proline lactone [Lenstra, Petit & Geise (1979). Cryst. Struct. Commun. 8, 1023–1029], whereby both carbonyl groups point roughly in the same direction because of the trans conformation of the peptide bond.

Related literature

For general background, see: Allen (2002). For related structures, see: Didier et al. (2004); Lenstra et al. (1979); Papaioannou et al. (1989). For related synthesis, see: Gómez-Vidal & Silverman (2001). For related literature, see: Flack & Schwarzenbach (1988).graphic file with name e-64-o2039-scheme1.jpg

Experimental

Crystal data

  • C10H15NO4

  • M r = 213.23

  • Monoclinic, Inline graphic

  • a = 6.0710 (7) Å

  • b = 9.3703 (11) Å

  • c = 9.3002 (10) Å

  • β = 100.013 (5)°

  • V = 521.00 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 (2) K

  • 0.3 × 0.2 × 0.2 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: none

  • 5951 measured reflections

  • 1143 independent reflections

  • 1054 reflections with I > 2σ(I)

  • R int = 0.066

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.102

  • S = 1.20

  • 1143 reflections

  • 139 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808030651/ww2125sup1.cif

e-64-o2039-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030651/ww2125Isup2.hkl

e-64-o2039-Isup2.hkl (55.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Service Commun de Diffraction X (Nancy Université) for providing access to crystallographic experimental facilities.

supplementary crystallographic information

Comment

N-tert-Butyloxycarbonyl-allohydroxy-L-proline lactone is prepared in one step under Mitsunobu conditions starting from corresponding trans-4-hydroxyproline. As previously described (Gómez-Vidal & Silverman, 2001), this lactone is a useful derivative that can be readily transformed to N-Boc-cis-4-hydroxyl-L-prolinemethyl ester by quantitative trans-esterification with methanol in the presence of sodium azide. Further transformation of the hydroxyl group to an azido group in the presence of diphenylphosphorylazide (DPPA) under Mistunobu conditions affords N-Boc-trans-4-azido-L-proline methyl ester, a useful building block for the preparation of 4-aminoproline containing molecules.

A search of the Cambridge Structural Database (CSD, Version 5.29; Allen, 2002) for allohydroxy-L-proline lacton gave rise to 3 hits: (1S,4S)-N-acetyl-3-oxo-5-aza-2-oxabicyclo[2.2.1]heptane (Lenstra et al., 1979); N-triphenylmethyl-2-oxa-5-azabicyclo[2.2.1]heptan-3-one (Papaioannou et al., 1989); tert-butyl 7-chloro-6-methyl-2,3-dihydro-2-oxo-6H-3,10b-methano-1,4- dioxazino[3,2-c](2,1)benzoxazine-4(4aH)-carboxylate (Didier et al., 2004). In the four structures the pyrrolidine ring (N1/C6/C7/C8/C9 numbering in the title compound) adopts the same envelope conformation with C8 out of the mean plane defined by N1, C6, C7 and C9. Three structures consists of an amide bond: the title compound, the N-acetyl-allohydroxy-L-proline lacton and the tert-butyl- 7-chloro-6-methyl-2,3-dihydro-2-oxo-6H-3,10b-methano-1,4- dioxazino(3,2-c)(2,1)benzoxazine-4(4aH)-carboxylate. The two first structures exhibit a quite similar structure with a nearly planar trans- amide bond. In the last one, the peptide bond is cis- and the nitrogen atom of the pyrrolidine ring exhibits an observable pyramidalization. Indeed, the sum of bond angles around the nitrogen atom is of 347.9° whereas of 357.9° and 357.4° in the two first structures.

Experimental

The title compound was prepared in 80% from N-Boc-trans-4-hydroxyproline following the a described procedure (Gómez-Vidal & Silverman, 2001) and was crystallized by slow evaporation of a cyclohexane/ethyl acetate (3:2, v/v) solution.

Refinement

Because of the lack of any significant anomalous dispersion effects, the absolute configurations of the title compound could not be determined from the diffraction experiments but was known from the method of synthesis. The origin was fixed by floating-origin restraints (Flack & Schwarzenbach, 1988). All H atoms were located in difference Fourier maps. The C-bonded H atoms were placed at calculated positions and refined using a riding model, with C—H distances of 0.93–0.96 Å. The H-atom Uiso parameters were fixed at 1.2Ueq(C) for methine and methylene C—H and at 1.5Ueq(C) for methyl C—H.

Figures

Fig. 1.

Fig. 1.

The molecular structure of title compound showing the atom-numbering scheme. All non-H atoms are represented by 50% probability displacement ellipsoids.

Crystal data

C10H15NO4 F(000) = 228
Mr = 213.23 Dx = 1.359 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.7107 Å
Hall symbol: P 2yb Cell parameters from 11845 reflections
a = 6.0710 (7) Å θ = 0.4–26.4°
b = 9.3703 (11) Å µ = 0.11 mm1
c = 9.3002 (10) Å T = 100 K
β = 100.013 (5)° Prism, colourless
V = 521.00 (10) Å3 0.3 × 0.2 × 0.2 mm
Z = 2

Data collection

Nonius KappaCCD area-detector diffractometer 1054 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.066
graphite θmax = 26.6°, θmin = 3.1°
ω and φ scans h = −7→7
5951 measured reflections k = −11→11
1143 independent reflections l = −11→11

Refinement

Refinement on F2 1 restraint
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.0035P)2 + 0.6362P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102 (Δ/σ)max < 0.001
S = 1.20 Δρmax = 0.23 e Å3
1143 reflections Δρmin = −0.22 e Å3
139 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.3991 (4) 0.3322 (3) 0.3133 (3) 0.0243 (6)
O2 0.0303 (4) 0.2997 (3) 0.2103 (3) 0.0280 (7)
O3 0.3864 (4) −0.0967 (3) 0.1079 (3) 0.0262 (7)
O4 0.0299 (5) −0.1077 (3) 0.1467 (3) 0.0319 (7)
N1 0.3137 (5) 0.1896 (4) 0.1226 (4) 0.0230 (7)
C1 0.3539 (7) 0.4316 (4) 0.4288 (4) 0.0249 (9)
C2 0.2354 (7) 0.5650 (4) 0.3607 (5) 0.0306 (10)
H2A 0.3194 0.6052 0.2893 0.046*
H2B 0.2265 0.6356 0.4372 0.046*
H2C 0.0842 0.54 0.3117 0.046*
C3 0.2204 (8) 0.3563 (5) 0.5297 (5) 0.0315 (10)
H3A 0.075 0.3274 0.4744 0.047*
H3B 0.1977 0.4212 0.6085 0.047*
H3C 0.3024 0.2717 0.5715 0.047*
C4 0.5884 (6) 0.4670 (4) 0.5062 (5) 0.0266 (9)
H4A 0.6574 0.3816 0.5556 0.04*
H4B 0.5813 0.5423 0.5784 0.04*
H4C 0.678 0.5001 0.4347 0.04*
C5 0.2283 (6) 0.2759 (4) 0.2159 (4) 0.0227 (8)
C6 0.5472 (7) 0.1381 (4) 0.1373 (5) 0.0250 (9)
H6A 0.6091 0.1101 0.239 0.03*
H6B 0.646 0.21 0.1032 0.03*
C7 0.5098 (7) 0.0093 (4) 0.0356 (4) 0.0265 (9)
H7 0.648 −0.0281 0.004 0.032*
C8 0.3299 (7) 0.0625 (5) −0.0887 (4) 0.0259 (9)
H8A 0.3762 0.1478 −0.1388 0.031*
H8B 0.273 −0.0127 −0.1603 0.031*
C9 0.1701 (6) 0.0969 (4) 0.0167 (4) 0.0233 (9)
H9 0.0204 0.1361 −0.0275 0.028*
C10 0.1710 (7) −0.0459 (4) 0.0960 (4) 0.0256 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0249 (14) 0.0180 (14) 0.0299 (14) −0.0012 (12) 0.0044 (12) −0.0053 (12)
O2 0.0234 (14) 0.0253 (16) 0.0352 (16) 0.0018 (13) 0.0050 (12) −0.0054 (13)
O3 0.0253 (15) 0.0189 (14) 0.0349 (16) −0.0018 (13) 0.0067 (12) 0.0007 (13)
O4 0.0344 (17) 0.0263 (16) 0.0359 (16) −0.0089 (14) 0.0091 (13) 0.0022 (14)
N1 0.0215 (17) 0.0192 (17) 0.0275 (18) 0.0024 (14) 0.0017 (14) −0.0023 (15)
C1 0.027 (2) 0.018 (2) 0.031 (2) 0.0018 (17) 0.0092 (17) −0.0050 (17)
C2 0.034 (2) 0.018 (2) 0.039 (2) 0.0029 (18) 0.0049 (19) −0.0017 (19)
C3 0.037 (2) 0.023 (2) 0.035 (2) −0.0045 (18) 0.0101 (19) −0.0047 (19)
C4 0.026 (2) 0.020 (2) 0.034 (2) −0.0009 (17) 0.0064 (17) −0.0039 (18)
C5 0.023 (2) 0.0157 (19) 0.029 (2) −0.0012 (16) 0.0028 (16) 0.0015 (16)
C6 0.024 (2) 0.021 (2) 0.030 (2) −0.0009 (17) 0.0057 (16) −0.0024 (17)
C7 0.028 (2) 0.022 (2) 0.030 (2) −0.0006 (18) 0.0099 (19) −0.0045 (18)
C8 0.031 (2) 0.019 (2) 0.028 (2) −0.0005 (17) 0.0056 (17) −0.0007 (18)
C9 0.0238 (19) 0.0187 (19) 0.027 (2) −0.0022 (17) 0.0049 (17) −0.0039 (16)
C10 0.031 (2) 0.020 (2) 0.025 (2) −0.0038 (18) 0.0024 (17) −0.0047 (17)

Geometric parameters (Å, °)

O1—C5 1.359 (5) C3—H3B 0.98
O1—C1 1.484 (5) C3—H3C 0.98
O2—C5 1.215 (5) C4—H4A 0.98
O3—C10 1.377 (5) C4—H4B 0.98
O3—C7 1.475 (5) C4—H4C 0.98
O4—C10 1.196 (5) C6—C7 1.526 (6)
N1—C5 1.353 (5) C6—H6A 0.99
N1—C9 1.478 (5) C6—H6B 0.99
N1—C6 1.481 (5) C7—C8 1.529 (6)
C1—C4 1.516 (5) C7—H7 1
C1—C3 1.516 (6) C8—C9 1.528 (6)
C1—C2 1.524 (6) C8—H8A 0.99
C2—H2A 0.98 C8—H8B 0.99
C2—H2B 0.98 C9—C10 1.528 (6)
C2—H2C 0.98 C9—H9 1
C3—H3A 0.98
C5—O1—C1 120.7 (3) O2—C5—O1 126.3 (4)
C10—O3—C7 106.3 (3) N1—C5—O1 109.0 (3)
C5—N1—C9 122.1 (3) N1—C6—C7 99.4 (3)
C5—N1—C6 127.1 (3) N1—C6—H6A 111.9
C9—N1—C6 108.3 (3) C7—C6—H6A 111.9
O1—C1—C4 101.8 (3) N1—C6—H6B 111.9
O1—C1—C3 110.0 (3) C7—C6—H6B 111.9
C4—C1—C3 111.5 (4) H6A—C6—H6B 109.6
O1—C1—C2 110.3 (3) O3—C7—C6 106.4 (3)
C4—C1—C2 110.7 (3) O3—C7—C8 102.2 (3)
C3—C1—C2 112.0 (3) C6—C7—C8 102.7 (3)
C1—C2—H2A 109.5 O3—C7—H7 114.7
C1—C2—H2B 109.5 C6—C7—H7 114.7
H2A—C2—H2B 109.5 C8—C7—H7 114.7
C1—C2—H2C 109.5 C9—C8—C7 91.9 (3)
H2A—C2—H2C 109.5 C9—C8—H8A 113.3
H2B—C2—H2C 109.5 C7—C8—H8A 113.3
C1—C3—H3A 109.5 C9—C8—H8B 113.3
C1—C3—H3B 109.5 C7—C8—H8B 113.3
H3A—C3—H3B 109.5 H8A—C8—H8B 110.6
C1—C3—H3C 109.5 N1—C9—C10 103.9 (3)
H3A—C3—H3C 109.5 N1—C9—C8 100.6 (3)
H3B—C3—H3C 109.5 C10—C9—C8 100.1 (3)
C1—C4—H4A 109.5 N1—C9—H9 116.5
C1—C4—H4B 109.5 C10—C9—H9 116.5
H4A—C4—H4B 109.5 C8—C9—H9 116.5
C1—C4—H4C 109.5 O4—C10—O3 122.4 (4)
H4A—C4—H4C 109.5 O4—C10—C9 132.2 (4)
H4B—C4—H4C 109.5 O3—C10—C9 105.4 (3)
O2—C5—N1 124.7 (4)
C5—O1—C1—C4 −178.9 (3) O3—C7—C8—C9 53.1 (3)
C5—O1—C1—C3 62.7 (5) C6—C7—C8—C9 −57.1 (3)
C5—O1—C1—C2 −61.3 (4) C5—N1—C9—C10 −93.9 (4)
C9—N1—C5—O2 −9.6 (6) C6—N1—C9—C10 69.1 (4)
C6—N1—C5—O2 −169.3 (4) C5—N1—C9—C8 162.7 (3)
C9—N1—C5—O1 171.3 (3) C6—N1—C9—C8 −34.2 (4)
C6—N1—C5—O1 11.6 (5) C7—C8—C9—N1 53.9 (3)
C1—O1—C5—O2 0.9 (6) C7—C8—C9—C10 −52.5 (3)
C1—O1—C5—N1 179.9 (3) C7—O3—C10—O4 −178.8 (4)
C5—N1—C6—C7 159.9 (4) C7—O3—C10—C9 −1.3 (4)
C9—N1—C6—C7 −2.1 (4) N1—C9—C10—O4 109.5 (5)
C10—O3—C7—C6 73.2 (4) C8—C9—C10—O4 −146.8 (4)
C10—O3—C7—C8 −34.2 (4) N1—C9—C10—O3 −67.7 (3)
N1—C6—C7—O3 −69.0 (4) C8—C9—C10—O3 36.1 (4)
N1—C6—C7—C8 38.0 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WW2125).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  3. Didier, C., Crichter, D. J., Walshe, N. D., Kojima, Y., Yamauchi, Y. & Barrett, A. G. M. (2004). J. Org. Chem.69, 7875–7879. [DOI] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Flack, H. D. & Schwarzenbach, D. (1988). Acta Cryst. A44, 499–506.
  7. Gómez-Vidal, J. A. & Silverman, R. B. (2001). Org. Lett.3, 2481–2484. [DOI] [PubMed]
  8. Lenstra, A. T. H., Petit, G. H. & Geise, H. J. (1979). Cryst. Struct. Commun.8, 1023–1029.
  9. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  10. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  11. Papaioannou, D., Stavropoulos, G., Nastopoulos, V., Voliotis, S. & Leban, I. (1989). Acta Cryst. C45, 1651–1652.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808030651/ww2125sup1.cif

e-64-o2039-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030651/ww2125Isup2.hkl

e-64-o2039-Isup2.hkl (55.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES