Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 24;64(Pt 10):o2007. doi: 10.1107/S1600536808030316

4-Methyl-2-[(E)-phen­yl(1,2,3,4-tetra­hydro-1-naphthyl­imino)meth­yl]phenol

Guang-You Zhang a, Ting Yang a,*, Bao-Wang Xu b, Di-Juan Chen a, Wan-Hui Wang c
PMCID: PMC2959346  PMID: 21201205

Abstract

In the crystal structure of the title compound, C24H23NO, the phenyl ring makes dihedral angles of 81.53 (11) and 75.35 (12)°, respectively, with the methyl-substituted and the fused benzene rings. The dihedral angle between the two benzene rings is 71.10 (10)°. There is an intra­molecular O—H⋯N hydrogen bond.

Related literature

For related structures, see: Elmali & Eleman (1998); Elmali et al. (1998). For general background, see: Bernaldi et al. (1996); Cavell et al. (2002); Desimani et al. (1995); Jacobsen et al. (1997); Kureshy et al. (1996); Nakayama et al. (2004); Takenaka et al. (2002); Varlamov et al. (2003).graphic file with name e-64-o2007-scheme1.jpg

Experimental

Crystal data

  • C24H23NO

  • M r = 341.43

  • Triclinic, Inline graphic

  • a = 10.121 (3) Å

  • b = 10.370 (2) Å

  • c = 10.482 (2) Å

  • α = 95.181 (3)°

  • β = 112.830 (3)°

  • γ = 106.243 (4)°

  • V = 948.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 (2) K

  • 0.41 × 0.21 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 5027 measured reflections

  • 3467 independent reflections

  • 2220 reflections with I > 2σ(I)

  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.128

  • S = 1.02

  • 3467 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808030316/is2336sup1.cif

e-64-o2007-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030316/is2336Isup2.hkl

e-64-o2007-Isup2.hkl (170KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.81 2.541 (2) 147

Acknowledgments

The authors are grateful to the Natural Science Foundation of Shandong Province China (grant No. G0231) and the Foundation of the Education Ministry of China for Returned Students (grant No. G0220) for financial support. The X-ray data were collected at Shandong Normal University, China.

supplementary crystallographic information

Comment

The synthesis of Schiff bases with a variety of functionalities is an important subject of research because this class of compounds are easily synthesized and have been widely used as ligands in the formation of almost all metal ions and asymmetric reactions (Elmali & Eleman, 1998; Elmali et al., 1998; Cavell et al., 2002; Nakayama et al., 2004; Varlamov et al., 2003; Takenaka et al., 2002; Desimani et al., 1995; Bernaldi et al., 1996; Kureshy et al., 1996; Jacobsen et al., 1997).

In this paper, we report the molecular structure of 4-methyl-2-[(E)-phenyl(1,2,3,4-tetrahydronaphthalen-1-ylimino)methyl]\ phenol, (I), which was initially prepared to test its catalytic activity. The Schiff base was prepared by conventional condensation of 1,2,3,4-tetrahydronaphthalen-1-amine with (2-hydroxy-5-methylphenyl)(phenyl)methanone in methanol.

There is an intramolecular O1—H1···N1 hydrogen bond (Table 1). Phenol atom O1 acts as a hydrogen-bond donor to atom N1, with O1··· N1= 2.541 (2) Å, which indicates a comparatively strong intramolecular hydrogen bond. This distance is significantly shorter than the sum (3.07 Å) of the van der Waals radii for N and O atoms. The O1—H1···N1 hydrogen bond in (I) completes a six-membered ring (C11/C18/C24/O1/H1/N1), which increases the stability of this compound. However, no aromatic π-π stacking interactions are present in the structure of (I).

The C12—C17 and C18—C24 aromatic rings are approximately vertical, the dihedral angle between their planes being 81.53 (11)°; the dihedral angle between the planes of the C4—C9 and C12—C17 aromatic rings is 75.35 (12)°, while that between the C4—C9 and C19—C24 planes is 71.1 (10)°.

Experimental

1,2,3,4-Tetrahydronaphthalen-1-amine (0.9 mmol) and (2-hydroxy-5-methylphenyl)(phenyl)methanone (0.9 mmol) were dissolved in methanol (10 ml) and reacted at room temperature for 48 h. After removal of the solvent, the yellow solid was obtained. Single crystals suitable for X-ray diffraction were grown by slow evaporation from an ethanol solution at room temperature.

Refinement

All H atoms were included in calculated positions and treated as riding on their parent atoms, with O—H = 0.82 Å, aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å, methylene C—H = 0.97 Å and methine C—H = 0.98 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C, O).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as spheres of arbitrary radii.

Fig. 2.

Fig. 2.

A packing diagram of (I), view down the b axis, showing the O1—H1···N1 hydrogen bonds (dashed lines). H atoms not involved in the hydrogen bonds have been omitted.

Crystal data

C24H23NO Z = 2
Mr = 341.43 F(000) = 364
Triclinic, P1 Dx = 1.195 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.121 (3) Å Cell parameters from 1182 reflections
b = 10.370 (2) Å θ = 2.3–23.4°
c = 10.482 (2) Å µ = 0.07 mm1
α = 95.181 (3)° T = 298 K
β = 112.830 (3)° Block, yellow
γ = 106.243 (4)° 0.41 × 0.21 × 0.20 mm
V = 948.7 (4) Å3

Data collection

Bruker SMART APEX2 CCD area-detector diffractometer 2220 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.015
graphite θmax = 25.5°, θmin = 2.1°
φ and ω scans h = −11→12
5027 measured reflections k = −9→12
3467 independent reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.046P] where P = (Fo2 + 2Fc2)/3
3467 reflections (Δ/σ)max < 0.001
237 parameters Δρmax = 0.13 e Å3
0 restraints Δρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1262 (2) 0.4914 (2) 0.3438 (2) 0.0635 (5)
H1A 0.1775 0.4751 0.4372 0.076*
H1B 0.1420 0.4344 0.2763 0.076*
C2 −0.0430 (2) 0.4527 (2) 0.3033 (2) 0.0674 (6)
H2A −0.0832 0.3591 0.3121 0.081*
H2B −0.0595 0.5138 0.3668 0.081*
C3 −0.1248 (2) 0.4641 (2) 0.1520 (2) 0.0668 (6)
H3A −0.1229 0.3917 0.0880 0.080*
H3B −0.2307 0.4505 0.1305 0.080*
C4 −0.0538 (2) 0.60102 (18) 0.12713 (18) 0.0504 (5)
C5 −0.1381 (2) 0.6473 (2) 0.0128 (2) 0.0628 (5)
H5 −0.2384 0.5927 −0.0470 0.075*
C6 −0.0767 (3) 0.7713 (2) −0.0136 (2) 0.0746 (6)
H6 −0.1352 0.8004 −0.0905 0.089*
C7 0.0713 (3) 0.8527 (2) 0.0731 (2) 0.0760 (6)
H7 0.1138 0.9368 0.0549 0.091*
C8 0.1561 (2) 0.8091 (2) 0.1869 (2) 0.0643 (5)
H8 0.2563 0.8648 0.2459 0.077*
C9 0.0960 (2) 0.68399 (18) 0.21587 (18) 0.0492 (4)
C10 0.19315 (19) 0.64187 (19) 0.34485 (18) 0.0529 (5)
H10 0.2032 0.6984 0.4305 0.063*
C11 0.4687 (2) 0.72766 (17) 0.46336 (18) 0.0485 (4)
C12 0.47002 (19) 0.76700 (19) 0.60484 (18) 0.0495 (4)
C13 0.4491 (2) 0.8879 (2) 0.6440 (2) 0.0685 (6)
H13 0.4349 0.9471 0.5823 0.082*
C14 0.4492 (3) 0.9210 (3) 0.7741 (3) 0.0938 (8)
H14 0.4349 1.0024 0.7999 0.113*
C15 0.4702 (3) 0.8349 (4) 0.8654 (3) 0.0999 (9)
H15 0.4707 0.8582 0.9534 0.120*
C16 0.4906 (2) 0.7147 (3) 0.8285 (2) 0.0863 (7)
H16 0.5039 0.6559 0.8907 0.104*
C17 0.4912 (2) 0.6809 (2) 0.6982 (2) 0.0656 (6)
H17 0.5061 0.5995 0.6733 0.079*
C18 0.61531 (19) 0.75267 (17) 0.45517 (19) 0.0489 (4)
C19 0.7536 (2) 0.81930 (18) 0.5754 (2) 0.0547 (5)
H19 0.7509 0.8483 0.6606 0.066*
C20 0.8942 (2) 0.8440 (2) 0.5731 (2) 0.0609 (5)
C21 1.0404 (2) 0.9151 (2) 0.7060 (2) 0.0814 (7)
H21A 1.0535 0.8547 0.7706 0.122*
H21B 1.0357 0.9978 0.7502 0.122*
H21C 1.1250 0.9379 0.6816 0.122*
C22 0.8940 (3) 0.7998 (2) 0.4443 (3) 0.0730 (6)
H22 0.9868 0.8141 0.4397 0.088*
C23 0.7608 (3) 0.7353 (2) 0.3232 (3) 0.0747 (6)
H23 0.7649 0.7068 0.2385 0.090*
C24 0.6212 (2) 0.7125 (2) 0.3262 (2) 0.0592 (5)
N1 0.34550 (17) 0.67080 (15) 0.34810 (15) 0.0552 (4)
O1 0.49367 (17) 0.65077 (17) 0.20388 (15) 0.0813 (5)
H1 0.4183 0.6450 0.2182 0.122*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0662 (13) 0.0706 (14) 0.0607 (13) 0.0295 (11) 0.0287 (11) 0.0228 (10)
C2 0.0667 (14) 0.0671 (13) 0.0752 (14) 0.0204 (10) 0.0374 (11) 0.0244 (11)
C3 0.0538 (12) 0.0704 (14) 0.0669 (14) 0.0124 (10) 0.0241 (10) 0.0094 (10)
C4 0.0490 (11) 0.0586 (12) 0.0431 (10) 0.0193 (9) 0.0203 (9) 0.0052 (8)
C5 0.0535 (12) 0.0779 (15) 0.0499 (12) 0.0257 (11) 0.0147 (10) 0.0070 (10)
C6 0.0799 (16) 0.0851 (17) 0.0579 (13) 0.0412 (14) 0.0188 (12) 0.0217 (12)
C7 0.0871 (17) 0.0626 (14) 0.0782 (15) 0.0278 (12) 0.0320 (14) 0.0266 (12)
C8 0.0586 (12) 0.0538 (13) 0.0659 (13) 0.0134 (10) 0.0171 (10) 0.0102 (10)
C9 0.0486 (11) 0.0530 (11) 0.0436 (10) 0.0189 (9) 0.0179 (8) 0.0053 (8)
C10 0.0490 (11) 0.0632 (13) 0.0457 (10) 0.0216 (9) 0.0189 (9) 0.0081 (9)
C11 0.0509 (11) 0.0511 (11) 0.0477 (11) 0.0221 (8) 0.0218 (9) 0.0132 (8)
C12 0.0383 (10) 0.0594 (12) 0.0466 (10) 0.0142 (8) 0.0166 (8) 0.0084 (9)
C13 0.0674 (14) 0.0650 (14) 0.0663 (14) 0.0160 (10) 0.0296 (11) 0.0015 (10)
C14 0.0892 (18) 0.098 (2) 0.0801 (18) 0.0179 (14) 0.0410 (15) −0.0227 (15)
C15 0.0812 (18) 0.146 (3) 0.0532 (15) 0.0165 (17) 0.0319 (13) −0.0062 (17)
C16 0.0619 (15) 0.134 (2) 0.0597 (15) 0.0237 (14) 0.0266 (12) 0.0350 (15)
C17 0.0585 (13) 0.0866 (15) 0.0605 (13) 0.0296 (11) 0.0294 (10) 0.0264 (11)
C18 0.0505 (11) 0.0514 (11) 0.0546 (11) 0.0239 (9) 0.0267 (9) 0.0182 (8)
C19 0.0558 (12) 0.0598 (12) 0.0603 (12) 0.0262 (9) 0.0307 (10) 0.0227 (9)
C20 0.0527 (12) 0.0612 (12) 0.0824 (15) 0.0251 (10) 0.0359 (11) 0.0316 (11)
C21 0.0521 (13) 0.0895 (17) 0.1002 (18) 0.0228 (12) 0.0291 (13) 0.0329 (13)
C22 0.0632 (15) 0.0807 (15) 0.1012 (18) 0.0317 (12) 0.0543 (14) 0.0319 (13)
C23 0.0822 (16) 0.0838 (16) 0.0843 (16) 0.0341 (13) 0.0577 (14) 0.0206 (13)
C24 0.0635 (13) 0.0644 (13) 0.0600 (13) 0.0256 (10) 0.0344 (11) 0.0149 (10)
N1 0.0512 (9) 0.0688 (10) 0.0468 (9) 0.0252 (8) 0.0197 (8) 0.0108 (7)
O1 0.0767 (10) 0.1065 (12) 0.0592 (9) 0.0281 (9) 0.0338 (8) 0.0020 (8)

Geometric parameters (Å, °)

C1—C10 1.514 (3) C12—C17 1.379 (2)
C1—C2 1.515 (3) C12—C13 1.382 (3)
C1—H1A 0.9700 C13—C14 1.375 (3)
C1—H1B 0.9700 C13—H13 0.9300
C2—C3 1.511 (3) C14—C15 1.365 (4)
C2—H2A 0.9700 C14—H14 0.9300
C2—H2B 0.9700 C15—C16 1.365 (4)
C3—C4 1.498 (3) C15—H15 0.9300
C3—H3A 0.9700 C16—C17 1.382 (3)
C3—H3B 0.9700 C16—H16 0.9300
C4—C5 1.391 (2) C17—H17 0.9300
C4—C9 1.392 (2) C18—C19 1.399 (2)
C5—C6 1.366 (3) C18—C24 1.407 (3)
C5—H5 0.9300 C19—C20 1.383 (3)
C6—C7 1.371 (3) C19—H19 0.9300
C6—H6 0.9300 C20—C22 1.385 (3)
C7—C8 1.374 (3) C20—C21 1.509 (3)
C7—H7 0.9300 C21—H21A 0.9600
C8—C9 1.385 (2) C21—H21B 0.9600
C8—H8 0.9300 C21—H21C 0.9600
C9—C10 1.517 (2) C22—C23 1.375 (3)
C10—N1 1.472 (2) C22—H22 0.9300
C10—H10 0.9800 C23—C24 1.380 (3)
C11—N1 1.286 (2) C23—H23 0.9300
C11—C18 1.471 (2) C24—O1 1.351 (2)
C11—C12 1.496 (2) O1—H1 0.8200
C10—C1—C2 110.10 (15) C17—C12—C13 118.94 (19)
C10—C1—H1A 109.6 C17—C12—C11 119.75 (17)
C2—C1—H1A 109.6 C13—C12—C11 121.31 (17)
C10—C1—H1B 109.6 C14—C13—C12 120.2 (2)
C2—C1—H1B 109.6 C14—C13—H13 119.9
H1A—C1—H1B 108.2 C12—C13—H13 119.9
C3—C2—C1 109.48 (17) C15—C14—C13 120.2 (2)
C3—C2—H2A 109.8 C15—C14—H14 119.9
C1—C2—H2A 109.8 C13—C14—H14 119.9
C3—C2—H2B 109.8 C14—C15—C16 120.5 (2)
C1—C2—H2B 109.8 C14—C15—H15 119.8
H2A—C2—H2B 108.2 C16—C15—H15 119.8
C4—C3—C2 112.22 (16) C15—C16—C17 119.6 (2)
C4—C3—H3A 109.2 C15—C16—H16 120.2
C2—C3—H3A 109.2 C17—C16—H16 120.2
C4—C3—H3B 109.2 C12—C17—C16 120.5 (2)
C2—C3—H3B 109.2 C12—C17—H17 119.8
H3A—C3—H3B 107.9 C16—C17—H17 119.8
C5—C4—C9 118.63 (18) C19—C18—C24 117.86 (17)
C5—C4—C3 119.88 (18) C19—C18—C11 120.89 (16)
C9—C4—C3 121.49 (16) C24—C18—C11 121.24 (16)
C6—C5—C4 121.44 (19) C20—C19—C18 122.96 (18)
C6—C5—H5 119.3 C20—C19—H19 118.5
C4—C5—H5 119.3 C18—C19—H19 118.5
C5—C6—C7 120.02 (19) C19—C20—C22 117.00 (19)
C5—C6—H6 120.0 C19—C20—C21 121.0 (2)
C7—C6—H6 120.0 C22—C20—C21 121.95 (19)
C6—C7—C8 119.4 (2) C20—C21—H21A 109.5
C6—C7—H7 120.3 C20—C21—H21B 109.5
C8—C7—H7 120.3 H21A—C21—H21B 109.5
C7—C8—C9 121.49 (19) C20—C21—H21C 109.5
C7—C8—H8 119.3 H21A—C21—H21C 109.5
C9—C8—H8 119.3 H21B—C21—H21C 109.5
C8—C9—C4 118.98 (17) C23—C22—C20 121.99 (19)
C8—C9—C10 119.51 (16) C23—C22—H22 119.0
C4—C9—C10 121.50 (17) C20—C22—H22 119.0
N1—C10—C1 110.00 (14) C22—C23—C24 120.6 (2)
N1—C10—C9 107.72 (15) C22—C23—H23 119.7
C1—C10—C9 112.97 (15) C24—C23—H23 119.7
N1—C10—H10 108.7 O1—C24—C23 118.30 (19)
C1—C10—H10 108.7 O1—C24—C18 122.10 (17)
C9—C10—H10 108.7 C23—C24—C18 119.60 (19)
N1—C11—C18 117.95 (16) C11—N1—C10 122.17 (15)
N1—C11—C12 123.35 (16) C24—O1—H1 109.5
C18—C11—C12 118.69 (15)
C10—C1—C2—C3 65.2 (2) C12—C13—C14—C15 0.1 (3)
C1—C2—C3—C4 −51.8 (2) C13—C14—C15—C16 −0.4 (4)
C2—C3—C4—C5 −159.33 (17) C14—C15—C16—C17 0.6 (4)
C2—C3—C4—C9 20.9 (3) C13—C12—C17—C16 0.4 (3)
C9—C4—C5—C6 0.2 (3) C11—C12—C17—C16 −179.06 (17)
C3—C4—C5—C6 −179.57 (18) C15—C16—C17—C12 −0.6 (3)
C4—C5—C6—C7 0.3 (3) N1—C11—C18—C19 177.33 (16)
C5—C6—C7—C8 −0.6 (3) C12—C11—C18—C19 −3.8 (2)
C6—C7—C8—C9 0.4 (3) N1—C11—C18—C24 −1.7 (2)
C7—C8—C9—C4 0.0 (3) C12—C11—C18—C24 177.24 (16)
C7—C8—C9—C10 −178.60 (18) C24—C18—C19—C20 −1.6 (3)
C5—C4—C9—C8 −0.3 (3) C11—C18—C19—C20 179.42 (15)
C3—C4—C9—C8 179.40 (17) C18—C19—C20—C22 0.2 (3)
C5—C4—C9—C10 178.29 (16) C18—C19—C20—C21 −179.38 (17)
C3—C4—C9—C10 −2.0 (3) C19—C20—C22—C23 0.6 (3)
C2—C1—C10—N1 −165.74 (15) C21—C20—C22—C23 −179.87 (19)
C2—C1—C10—C9 −45.3 (2) C20—C22—C23—C24 0.1 (3)
C8—C9—C10—N1 −45.2 (2) C22—C23—C24—O1 178.91 (19)
C4—C9—C10—N1 136.15 (17) C22—C23—C24—C18 −1.5 (3)
C8—C9—C10—C1 −166.94 (16) C19—C18—C24—O1 −178.26 (16)
C4—C9—C10—C1 14.5 (2) C11—C18—C24—O1 0.8 (3)
N1—C11—C12—C17 98.4 (2) C19—C18—C24—C23 2.2 (3)
C18—C11—C12—C17 −80.5 (2) C11—C18—C24—C23 −178.77 (16)
N1—C11—C12—C13 −81.1 (2) C18—C11—N1—C10 −179.77 (14)
C18—C11—C12—C13 100.0 (2) C12—C11—N1—C10 1.4 (3)
C17—C12—C13—C14 −0.2 (3) C1—C10—N1—C11 −100.19 (19)
C11—C12—C13—C14 179.30 (18) C9—C10—N1—C11 136.28 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.81 2.541 (2) 147

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2336).

References

  1. Bernaldi, A., Colombo, G. & Seolastico, C. (1996). Tetrahedron Lett.37, 8921–8924.
  2. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cavell, R. G., Aparna, K., Kamalesh Babu, R. P. & Wang, Q. (2002). J. Mol. Catal. A. Chem.189, 137–138.
  4. Desimani, G., Dasi, G., Paita, G., Quadrelle, P. & Righille, P. (1995). Tetrahedron, 51, 4131–4144.
  5. Elmali, A. & Eleman, Y. (1998). J. Mol. Struct.442, 31–37.
  6. Elmali, A., Eleman, Y. & Zeyrek, C. T. (1998). J. Mol. Struct.443, 123–130.
  7. Jacobsen, E. N., Kakiuch, F., Konsler, R. G., Larrow, J. F. & Tokunaga, M. (1997). Tetrahedron Lett.38, 773–776.
  8. Kureshy, R., Khan, M. & Abdi, S. (1996). J. Mol. Catal. A. Chem.189, 137–138.
  9. Nakayama, Y., Bando, H., Sonobe, Y. & Fujita, T. (2004). J. Mol. Catal. A. Chem.213, 141–142.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Takenaka, N., Huang, Y. & Rawal, V. H. (2002). Tetrahedron, 58, 8299–8305.
  12. Varlamov, A. V., Zubkov, F. I., Boltukhina, E. V., Sidorenko, N. V. & Borisov, R. S. (2003). Tetrahedron Lett.44, 3641–3643.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808030316/is2336sup1.cif

e-64-o2007-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030316/is2336Isup2.hkl

e-64-o2007-Isup2.hkl (170KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES