Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 24;64(Pt 10):o1993. doi: 10.1107/S1600536808029875

Methyl 2-benzyl-5-[1-(4-methoxy­phen­yl)-4-oxo-3-phenyl­azetidin-2-yl]-4-nitro-3-phenyl­pyrrolidine-2-carboxyl­ate

S Sundaresan a, P Ramesh b, N Arumugam c, R Raghunathan c, M N Ponnuswamy a,*
PMCID: PMC2959360  PMID: 21201192

Abstract

In the title mol­ecule, C35H33N3O6, the pyrrolidine ring adopts a twist conformation. The mol­ecules are paired into centrosymmetric dimers by weak inter­molecular C—H⋯O hydrogen bonds. The dimers inter­act further again via C—H⋯O hydrogen bonds and N—H⋯O intramolecular interaction also stabilize the crystal packing.

Related literature

For the pharmacological properties of β-lactam derivatives, see: Alcaide et al. (2000). For general background, see: Cremer & Pople (1975); Nardelli (1983); Beddoes et al. (1986).graphic file with name e-64-o1993-scheme1.jpg

Experimental

Crystal data

  • C35H33N3O6

  • M r = 591.64

  • Triclinic, Inline graphic

  • a = 10.1727 (2) Å

  • b = 10.4210 (2) Å

  • c = 15.1680 (3) Å

  • α = 91.833 (1)°

  • β = 106.154 (1)°

  • γ = 102.536 (1)°

  • V = 1500.31 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.23 × 0.20 × 0.18 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001) T min = 0.978, T max = 0.987

  • 29479 measured reflections

  • 5290 independent reflections

  • 4498 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.112

  • S = 1.02

  • 5290 reflections

  • 400 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808029875/cv2439sup1.cif

e-64-o1993-sup1.cif (28.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029875/cv2439Isup2.hkl

e-64-o1993-Isup2.hkl (253.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.898 (19) 2.314 (18) 2.7378 (18) 108.7 (14)
C7—H7B⋯O3i 0.96 2.48 3.145 (2) 126
C14—H14⋯O5ii 0.93 2.60 3.359 (2) 139
C30—H30⋯O1iii 0.93 2.57 3.240 (2) 129

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

SS thanks Dr Babu Varghese, SAIF, IIT Madras, Chennai, India, for his kind help in data collection.

supplementary crystallographic information

Comment

An extensive use of common β-lactam antibiotics, such as penicillin and cephalosporins, in medicine has resulted in an increasing number of resistant bacteria through mutation and β-lactamase gene transfer. The importance and structural diversity of biologically active β-lactam antibiotics, the most widely employed family of antimicrobial agents led to the development of efficient approaches for the construction of appropriately substituted 2-azetidinones (Alcaide et al., 2000). As a contribution to this field, we present here the crystal structure of the title compound, (I).

In (I) (Fig. 1), the pyrrolidine ring adopts a twist conformation. The puckering parameters (Cremer & Pople, 1975) and the asymmetry parameter (Nardelli, 1983) for this ring are q2 = 0.382 (2) Å, π = 340.9 (2)° and Δ2(C3) = 0.48 (14)°, respectively. The sum of angles at N1 of the pyrrolidine ring system [327.14 (12)°] is in accordance with sp3 hybridization (Beddoes et al., 1986). The β-lactam ring is planar and the keto atom O5 deviates from this plane at 0.049 (1) Å.

The weak intermolecular C—H···O hydrogen bonds (Table 1) contribute to the crystal packing stability.

Experimental

β-Lactam aldehyde (1.0 mol) was treated with phenyl alanine methyl ester hydrochloride in the presence of Et3N (2.5 mol) and anhydrous MgSO4 (2.0 g) in dry chloromethane (10 ml) at room temperature for 12 h to give the imine. The imine was washed with water and dried over Na2SO4. The solvent was evaporated under vacuum. The imine was then stirred with silver (I) acetate and nitrostyene (1.0 mol) in the presence of Et3N (1.2 mol) and molecular sieves in dry toluene (30 ml) again at room temperature for 12 h. The reaction mixture was filtered through a plug celite. The solvent was evaporated under reduced pressure and the residue was subjected to column chromatogaraphy on silicagel (100–200 mesh), with hexane and ethyl acetate (7:3) as eluent to give the product. The compound was recrystallized from ethyl acetate.

Refinement

C-bound H atoms were geometrically positioned (C—H=0.93–0.98 Å) and refined as riding, with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms. The H atom attached to N was located from difference Fourier map and isotropically refined with bond restraint N—H=0.90 (2) Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atomic numbering and 50% probability displacement ellipsoids.

Crystal data

C35H33N3O6 Z = 2
Mr = 591.64 F(000) = 624
Triclinic, P1 Dx = 1.310 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.1727 (2) Å Cell parameters from 4523 reflections
b = 10.4210 (2) Å θ = 2.1–25.0°
c = 15.1680 (3) Å µ = 0.09 mm1
α = 91.833 (1)° T = 293 K
β = 106.154 (1)° Block, colourless
γ = 102.536 (1)° 0.23 × 0.20 × 0.18 mm
V = 1500.31 (5) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer 5290 independent reflections
Radiation source: fine-focus sealed tube 4498 reflections with I > 2σ(I)
graphite Rint = 0.022
ω and φ scans θmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) h = −12→12
Tmin = 0.978, Tmax = 0.987 k = −12→12
29479 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.5651P] where P = (Fo2 + 2Fc2)/3
5290 reflections (Δ/σ)max = 0.009
400 parameters Δρmax = 0.28 e Å3
1 restraint Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.23296 (14) 1.11254 (12) 0.12037 (10) 0.0626 (4)
O2 0.05010 (12) 0.97536 (12) 0.14730 (9) 0.0516 (3)
O3 0.34127 (15) 0.89947 (15) −0.01081 (9) 0.0693 (4)
O4 0.43868 (18) 0.73840 (17) −0.01654 (10) 0.0826 (5)
O5 0.89861 (13) 0.81334 (13) 0.32648 (10) 0.0665 (4)
O6 0.83342 (17) 1.40874 (13) 0.47301 (9) 0.0727 (4)
N1 0.41420 (13) 0.96169 (12) 0.20111 (9) 0.0360 (3)
H1 0.4247 (19) 1.0180 (18) 0.1586 (13) 0.050 (5)*
C2 0.26396 (15) 0.91317 (14) 0.19096 (10) 0.0344 (3)
C3 0.21203 (15) 0.78623 (14) 0.11656 (10) 0.0351 (3)
H3 0.1651 0.8153 0.0577 0.042*
C4 0.34889 (15) 0.75799 (14) 0.10697 (10) 0.0352 (3)
H4 0.3481 0.6642 0.1114 0.042*
C5 0.46471 (14) 0.84462 (14) 0.18892 (9) 0.0333 (3)
H5 0.4641 0.7975 0.2437 0.040*
C6 0.18470 (16) 1.01459 (14) 0.14978 (10) 0.0393 (3)
C7 −0.0397 (2) 1.0629 (2) 0.11332 (17) 0.0759 (6)
H7A −0.0355 1.1242 0.1632 0.114*
H7B −0.1348 1.0125 0.0873 0.114*
H7C −0.0087 1.1105 0.0668 0.114*
C8 0.24250 (17) 0.88720 (15) 0.28635 (10) 0.0390 (3)
H8A 0.1451 0.8427 0.2782 0.047*
H8B 0.3011 0.8292 0.3153 0.047*
C9 0.27898 (17) 1.01341 (15) 0.34880 (10) 0.0421 (4)
C10 0.4168 (2) 1.0744 (2) 0.39661 (12) 0.0592 (5)
H10 0.4893 1.0358 0.3923 0.071*
C11 0.4474 (3) 1.1928 (2) 0.45082 (14) 0.0774 (7)
H11 0.5404 1.2330 0.4827 0.093*
C12 0.3418 (3) 1.2512 (2) 0.45787 (14) 0.0780 (7)
H12 0.3632 1.3313 0.4936 0.094*
C13 0.2051 (3) 1.1913 (2) 0.41225 (15) 0.0690 (6)
H13 0.1329 1.2300 0.4173 0.083*
C14 0.1743 (2) 1.07297 (17) 0.35862 (13) 0.0533 (4)
H14 0.0808 1.0323 0.3283 0.064*
C15 0.11103 (17) 0.66599 (15) 0.13188 (12) 0.0450 (4)
C16 −0.02995 (19) 0.64235 (19) 0.08179 (17) 0.0655 (6)
H16 −0.0610 0.7028 0.0421 0.079*
C17 −0.1244 (3) 0.5302 (3) 0.0903 (2) 0.0917 (9)
H17 −0.2185 0.5149 0.0558 0.110*
C18 −0.0802 (3) 0.4412 (3) 0.1494 (2) 0.0987 (10)
H18 −0.1445 0.3664 0.1559 0.118*
C19 0.0593 (3) 0.4625 (2) 0.19912 (17) 0.0898 (9)
H19 0.0896 0.4015 0.2386 0.108*
C20 0.15546 (12) 0.57555 (12) 0.19041 (7) 0.0653 (5)
H20 0.2498 0.5899 0.2242 0.078*
N21 0.37621 (12) 0.80108 (12) 0.01871 (7) 0.0463 (3)
C22 0.61299 (15) 0.86856 (14) 0.18124 (10) 0.0358 (3)
H22 0.6225 0.9148 0.1273 0.043*
C23 0.68163 (16) 0.74593 (15) 0.18950 (11) 0.0409 (4)
H23 0.7200 0.7330 0.1382 0.049*
C24 0.79266 (16) 0.82884 (16) 0.27273 (12) 0.0453 (4)
N25 0.72602 (13) 0.92975 (12) 0.26579 (9) 0.0400 (3)
C26 0.60056 (16) 0.61819 (15) 0.21114 (11) 0.0398 (3)
C27 0.5883 (2) 0.60247 (17) 0.29894 (12) 0.0544 (4)
H27 0.6350 0.6700 0.3460 0.065*
C28 0.5075 (2) 0.48762 (19) 0.31760 (14) 0.0665 (6)
H28 0.4998 0.4789 0.3769 0.080*
C29 0.4386 (2) 0.38636 (18) 0.24931 (14) 0.0612 (5)
H29 0.3833 0.3097 0.2619 0.073*
C30 0.45205 (19) 0.39919 (17) 0.16239 (13) 0.0543 (4)
H30 0.4066 0.3306 0.1159 0.065*
C31 0.53301 (17) 0.51375 (16) 0.14369 (12) 0.0468 (4)
H31 0.5423 0.5208 0.0846 0.056*
C32 0.75777 (15) 1.05282 (15) 0.31897 (10) 0.0387 (3)
C33 0.81676 (18) 1.06067 (17) 0.41328 (11) 0.0492 (4)
H33 0.8368 0.9859 0.4408 0.059*
C34 0.84635 (19) 1.17897 (18) 0.46717 (12) 0.0535 (4)
H34 0.8872 1.1841 0.5306 0.064*
C35 0.81481 (19) 1.28903 (17) 0.42629 (12) 0.0499 (4)
C36 0.75824 (19) 1.28152 (17) 0.33134 (12) 0.0519 (4)
H36 0.7393 1.3564 0.3036 0.062*
C37 0.73000 (17) 1.16421 (16) 0.27817 (11) 0.0449 (4)
H37 0.6921 1.1598 0.2145 0.054*
C38 0.8872 (3) 1.4202 (2) 0.57069 (15) 0.0889 (8)
H38A 0.8229 1.3612 0.5954 0.133*
H38B 0.8980 1.5093 0.5949 0.133*
H38C 0.9769 1.3976 0.5878 0.133*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0623 (8) 0.0387 (7) 0.0866 (10) 0.0095 (6) 0.0213 (7) 0.0223 (6)
O2 0.0399 (6) 0.0535 (7) 0.0648 (8) 0.0186 (5) 0.0139 (5) 0.0148 (6)
O3 0.0656 (9) 0.0890 (10) 0.0612 (8) 0.0237 (8) 0.0238 (7) 0.0355 (8)
O4 0.0925 (11) 0.1026 (12) 0.0673 (9) 0.0283 (10) 0.0449 (9) −0.0130 (8)
O5 0.0401 (7) 0.0584 (8) 0.0846 (10) 0.0125 (6) −0.0084 (6) 0.0024 (7)
O6 0.1005 (11) 0.0491 (8) 0.0573 (8) 0.0088 (7) 0.0136 (7) −0.0094 (6)
N1 0.0327 (7) 0.0317 (7) 0.0411 (7) 0.0024 (5) 0.0109 (5) 0.0018 (5)
C2 0.0316 (7) 0.0306 (7) 0.0388 (8) 0.0036 (6) 0.0095 (6) 0.0020 (6)
C3 0.0315 (7) 0.0329 (8) 0.0378 (8) 0.0040 (6) 0.0083 (6) 0.0006 (6)
C4 0.0326 (8) 0.0333 (8) 0.0366 (8) 0.0046 (6) 0.0079 (6) 0.0009 (6)
C5 0.0318 (7) 0.0334 (7) 0.0320 (7) 0.0040 (6) 0.0078 (6) 0.0028 (6)
C6 0.0422 (9) 0.0321 (8) 0.0410 (8) 0.0069 (7) 0.0099 (7) 0.0007 (6)
C7 0.0667 (13) 0.0884 (16) 0.0871 (15) 0.0484 (12) 0.0209 (11) 0.0243 (12)
C8 0.0400 (8) 0.0355 (8) 0.0433 (8) 0.0080 (6) 0.0155 (7) 0.0062 (6)
C9 0.0494 (9) 0.0405 (8) 0.0364 (8) 0.0042 (7) 0.0174 (7) 0.0052 (6)
C10 0.0550 (11) 0.0741 (13) 0.0402 (9) 0.0027 (9) 0.0111 (8) −0.0032 (8)
C11 0.0784 (15) 0.0843 (16) 0.0468 (11) −0.0218 (13) 0.0156 (10) −0.0148 (10)
C12 0.121 (2) 0.0534 (12) 0.0555 (12) −0.0122 (13) 0.0460 (13) −0.0123 (9)
C13 0.1007 (17) 0.0483 (11) 0.0701 (13) 0.0140 (11) 0.0481 (13) −0.0011 (9)
C14 0.0611 (11) 0.0469 (10) 0.0563 (10) 0.0085 (8) 0.0278 (9) 0.0004 (8)
C15 0.0461 (9) 0.0346 (8) 0.0533 (9) −0.0028 (7) 0.0239 (8) −0.0086 (7)
C16 0.0402 (10) 0.0508 (11) 0.1018 (16) −0.0018 (8) 0.0269 (10) −0.0182 (10)
C17 0.0582 (14) 0.0649 (15) 0.147 (3) −0.0187 (12) 0.0532 (15) −0.0343 (16)
C18 0.112 (2) 0.0620 (15) 0.121 (2) −0.0379 (15) 0.080 (2) −0.0239 (15)
C19 0.143 (3) 0.0435 (11) 0.0733 (15) −0.0174 (12) 0.0472 (16) −0.0008 (10)
C20 0.0855 (15) 0.0458 (10) 0.0552 (11) −0.0057 (9) 0.0221 (10) 0.0024 (8)
N21 0.0357 (7) 0.0606 (9) 0.0356 (7) 0.0024 (6) 0.0071 (6) −0.0049 (6)
C22 0.0321 (8) 0.0377 (8) 0.0335 (7) 0.0021 (6) 0.0081 (6) 0.0027 (6)
C23 0.0353 (8) 0.0430 (9) 0.0446 (8) 0.0088 (7) 0.0128 (7) −0.0002 (7)
C24 0.0314 (8) 0.0437 (9) 0.0556 (10) 0.0053 (7) 0.0070 (7) 0.0049 (7)
N25 0.0313 (6) 0.0392 (7) 0.0417 (7) 0.0039 (5) 0.0021 (5) 0.0000 (5)
C26 0.0378 (8) 0.0364 (8) 0.0442 (8) 0.0113 (6) 0.0089 (6) −0.0004 (6)
C27 0.0722 (12) 0.0402 (9) 0.0420 (9) 0.0042 (8) 0.0101 (8) −0.0016 (7)
C28 0.0963 (16) 0.0480 (11) 0.0496 (10) 0.0039 (10) 0.0220 (10) 0.0089 (8)
C29 0.0716 (13) 0.0393 (10) 0.0695 (13) 0.0046 (9) 0.0220 (10) 0.0065 (8)
C30 0.0542 (11) 0.0395 (9) 0.0630 (11) 0.0047 (8) 0.0139 (9) −0.0107 (8)
C31 0.0459 (9) 0.0468 (9) 0.0470 (9) 0.0100 (7) 0.0147 (7) −0.0069 (7)
C32 0.0301 (7) 0.0392 (8) 0.0411 (8) 0.0009 (6) 0.0073 (6) 0.0020 (6)
C33 0.0527 (10) 0.0442 (9) 0.0423 (9) 0.0062 (8) 0.0038 (7) 0.0067 (7)
C34 0.0576 (11) 0.0546 (10) 0.0370 (9) 0.0031 (8) 0.0038 (7) 0.0007 (7)
C35 0.0508 (10) 0.0430 (9) 0.0480 (9) −0.0006 (8) 0.0117 (8) −0.0037 (7)
C36 0.0572 (11) 0.0418 (9) 0.0508 (10) 0.0072 (8) 0.0096 (8) 0.0077 (7)
C37 0.0459 (9) 0.0437 (9) 0.0373 (8) 0.0029 (7) 0.0056 (7) 0.0050 (7)
C38 0.131 (2) 0.0645 (14) 0.0560 (13) −0.0010 (14) 0.0233 (13) −0.0162 (10)

Geometric parameters (Å, °)

O1—C6 1.1896 (19) C16—C17 1.377 (3)
O2—C6 1.3307 (19) C16—H16 0.9300
O2—C7 1.436 (2) C17—C18 1.370 (4)
O3—N21 1.2154 (17) C17—H17 0.9300
O4—N21 1.2098 (18) C18—C19 1.375 (4)
O5—C24 1.203 (2) C18—H18 0.9300
O6—C35 1.364 (2) C19—C20 1.394 (2)
O6—C38 1.421 (3) C19—H19 0.9300
N1—C5 1.4482 (19) C20—H20 0.9300
N1—C2 1.4642 (18) C22—N25 1.4773 (18)
N1—H1 0.898 (19) C22—C23 1.577 (2)
C2—C6 1.513 (2) C22—H22 0.9800
C2—C8 1.546 (2) C23—C26 1.504 (2)
C2—C3 1.6036 (19) C23—C24 1.526 (2)
C3—C15 1.507 (2) C23—H23 0.9800
C3—C4 1.528 (2) C24—N25 1.361 (2)
C3—H3 0.9800 N25—C32 1.417 (2)
C4—N21 1.5040 (18) C26—C27 1.383 (2)
C4—C5 1.5491 (19) C26—C31 1.384 (2)
C4—H4 0.9800 C27—C28 1.383 (3)
C5—C22 1.512 (2) C27—H27 0.9300
C5—H5 0.9800 C28—C29 1.372 (3)
C7—H7A 0.9600 C28—H28 0.9300
C7—H7B 0.9600 C29—C30 1.370 (3)
C7—H7C 0.9600 C29—H29 0.9300
C8—C9 1.509 (2) C30—C31 1.382 (2)
C8—H8A 0.9700 C30—H30 0.9300
C8—H8B 0.9700 C31—H31 0.9300
C9—C14 1.382 (2) C32—C37 1.379 (2)
C9—C10 1.383 (2) C32—C33 1.381 (2)
C10—C11 1.386 (3) C33—C34 1.384 (2)
C10—H10 0.9300 C33—H33 0.9300
C11—C12 1.371 (4) C34—C35 1.378 (3)
C11—H11 0.9300 C34—H34 0.9300
C12—C13 1.365 (3) C35—C36 1.387 (2)
C12—H12 0.9300 C36—C37 1.372 (2)
C13—C14 1.381 (3) C36—H36 0.9300
C13—H13 0.9300 C37—H37 0.9300
C14—H14 0.9300 C38—H38A 0.9600
C15—C20 1.377 (2) C38—H38B 0.9600
C15—C16 1.387 (3) C38—H38C 0.9600
C6—O2—C7 117.27 (15) C17—C18—H18 120.0
C35—O6—C38 117.72 (16) C19—C18—H18 120.0
C5—N1—C2 105.14 (11) C18—C19—C20 120.0 (2)
C5—N1—H1 112.7 (12) C18—C19—H19 120.0
C2—N1—H1 109.2 (12) C20—C19—H19 120.0
N1—C2—C6 109.82 (12) C15—C20—C19 120.13 (17)
N1—C2—C8 109.67 (12) C15—C20—H20 119.9
C6—C2—C8 109.45 (12) C19—C20—H20 119.9
N1—C2—C3 105.46 (11) O4—N21—O3 123.59 (14)
C6—C2—C3 107.03 (11) O4—N21—C4 117.29 (14)
C8—C2—C3 115.26 (11) O3—N21—C4 119.01 (12)
C15—C3—C4 113.48 (12) N25—C22—C5 115.57 (12)
C15—C3—C2 119.09 (12) N25—C22—C23 86.76 (11)
C4—C3—C2 103.76 (11) C5—C22—C23 116.52 (12)
C15—C3—H3 106.6 N25—C22—H22 111.9
C4—C3—H3 106.6 C5—C22—H22 111.9
C2—C3—H3 106.6 C23—C22—H22 111.9
N21—C4—C3 111.73 (12) C26—C23—C24 114.59 (13)
N21—C4—C5 108.44 (11) C26—C23—C22 118.28 (12)
C3—C4—C5 104.15 (11) C24—C23—C22 84.95 (11)
N21—C4—H4 110.8 C26—C23—H23 112.1
C3—C4—H4 110.8 C24—C23—H23 112.1
C5—C4—H4 110.8 C22—C23—H23 112.1
N1—C5—C22 115.85 (12) O5—C24—N25 132.13 (16)
N1—C5—C4 104.92 (11) O5—C24—C23 134.79 (16)
C22—C5—C4 115.49 (12) N25—C24—C23 93.07 (12)
N1—C5—H5 106.6 C24—N25—C32 132.30 (13)
C22—C5—H5 106.6 C24—N25—C22 95.07 (12)
C4—C5—H5 106.6 C32—N25—C22 132.58 (12)
O1—C6—O2 124.43 (15) C27—C26—C31 117.78 (15)
O1—C6—C2 125.63 (15) C27—C26—C23 120.89 (14)
O2—C6—C2 109.88 (12) C31—C26—C23 121.31 (14)
O2—C7—H7A 109.5 C28—C27—C26 120.84 (16)
O2—C7—H7B 109.5 C28—C27—H27 119.6
H7A—C7—H7B 109.5 C26—C27—H27 119.6
O2—C7—H7C 109.5 C29—C28—C27 120.53 (18)
H7A—C7—H7C 109.5 C29—C28—H28 119.7
H7B—C7—H7C 109.5 C27—C28—H28 119.7
C9—C8—C2 111.98 (12) C30—C29—C28 119.38 (17)
C9—C8—H8A 109.2 C30—C29—H29 120.3
C2—C8—H8A 109.2 C28—C29—H29 120.3
C9—C8—H8B 109.2 C29—C30—C31 120.16 (16)
C2—C8—H8B 109.2 C29—C30—H30 119.9
H8A—C8—H8B 107.9 C31—C30—H30 119.9
C14—C9—C10 117.83 (16) C30—C31—C26 121.27 (16)
C14—C9—C8 120.43 (15) C30—C31—H31 119.4
C10—C9—C8 121.74 (16) C26—C31—H31 119.4
C9—C10—C11 120.4 (2) C37—C32—C33 119.64 (15)
C9—C10—H10 119.8 C37—C32—N25 121.12 (14)
C11—C10—H10 119.8 C33—C32—N25 119.24 (14)
C12—C11—C10 120.6 (2) C32—C33—C34 120.50 (16)
C12—C11—H11 119.7 C32—C33—H33 119.8
C10—C11—H11 119.7 C34—C33—H33 119.8
C13—C12—C11 119.76 (19) C35—C34—C33 119.57 (16)
C13—C12—H12 120.1 C35—C34—H34 120.2
C11—C12—H12 120.1 C33—C34—H34 120.2
C12—C13—C14 119.7 (2) O6—C35—C34 124.53 (16)
C12—C13—H13 120.1 O6—C35—C36 115.68 (16)
C14—C13—H13 120.1 C34—C35—C36 119.79 (16)
C13—C14—C9 121.67 (19) C37—C36—C35 120.38 (16)
C13—C14—H14 119.2 C37—C36—H36 119.8
C9—C14—H14 119.2 C35—C36—H36 119.8
C20—C15—C16 119.00 (15) C36—C37—C32 120.09 (15)
C20—C15—C3 122.10 (14) C36—C37—H37 120.0
C16—C15—C3 118.82 (17) C32—C37—H37 120.0
C17—C16—C15 120.7 (2) O6—C38—H38A 109.5
C17—C16—H16 119.7 O6—C38—H38B 109.5
C15—C16—H16 119.7 H38A—C38—H38B 109.5
C18—C17—C16 120.2 (3) O6—C38—H38C 109.5
C18—C17—H17 119.9 H38A—C38—H38C 109.5
C16—C17—H17 119.9 H38B—C38—H38C 109.5
C17—C18—C19 120.0 (2)
C5—N1—C2—C6 −148.46 (12) C3—C4—N21—O4 −148.71 (14)
C5—N1—C2—C8 91.23 (13) C5—C4—N21—O4 97.06 (16)
C5—N1—C2—C3 −33.45 (14) C3—C4—N21—O3 34.86 (17)
N1—C2—C3—C15 139.14 (14) C5—C4—N21—O3 −79.36 (16)
C6—C2—C3—C15 −103.94 (15) N1—C5—C22—N25 67.52 (16)
C8—C2—C3—C15 18.03 (19) C4—C5—C22—N25 −169.25 (12)
N1—C2—C3—C4 11.85 (14) N1—C5—C22—C23 167.24 (12)
C6—C2—C3—C4 128.77 (12) C4—C5—C22—C23 −69.53 (16)
C8—C2—C3—C4 −109.26 (13) N25—C22—C23—C26 112.64 (14)
C15—C3—C4—N21 124.95 (13) C5—C22—C23—C26 −4.42 (19)
C2—C3—C4—N21 −104.33 (12) N25—C22—C23—C24 −2.62 (11)
C15—C3—C4—C5 −118.20 (13) C5—C22—C23—C24 −119.68 (13)
C2—C3—C4—C5 12.52 (14) C26—C23—C24—O5 62.9 (3)
C2—N1—C5—C22 170.75 (12) C22—C23—C24—O5 −178.2 (2)
C2—N1—C5—C4 42.13 (14) C26—C23—C24—N25 −116.01 (14)
N21—C4—C5—N1 85.54 (13) C22—C23—C24—N25 2.85 (12)
C3—C4—C5—N1 −33.58 (14) O5—C24—N25—C32 0.4 (3)
N21—C4—C5—C22 −43.29 (16) C23—C24—N25—C32 179.33 (15)
C3—C4—C5—C22 −162.40 (12) O5—C24—N25—C22 178.0 (2)
C7—O2—C6—O1 −5.1 (3) C23—C24—N25—C22 −3.04 (12)
C7—O2—C6—C2 177.64 (15) C5—C22—N25—C24 120.89 (14)
N1—C2—C6—O1 7.7 (2) C23—C22—N25—C24 2.94 (12)
C8—C2—C6—O1 128.15 (17) C5—C22—N25—C32 −61.5 (2)
C3—C2—C6—O1 −106.30 (18) C23—C22—N25—C32 −179.44 (16)
N1—C2—C6—O2 −175.08 (12) C24—C23—C26—C27 23.7 (2)
C8—C2—C6—O2 −54.63 (16) C22—C23—C26—C27 −74.1 (2)
C3—C2—C6—O2 70.92 (15) C24—C23—C26—C31 −157.88 (15)
N1—C2—C8—C9 67.48 (16) C22—C23—C26—C31 104.29 (17)
C6—C2—C8—C9 −53.05 (16) C31—C26—C27—C28 −2.0 (3)
C3—C2—C8—C9 −173.72 (12) C23—C26—C27—C28 176.51 (17)
C2—C8—C9—C14 98.48 (17) C26—C27—C28—C29 0.5 (3)
C2—C8—C9—C10 −80.41 (19) C27—C28—C29—C30 0.9 (3)
C14—C9—C10—C11 −1.3 (3) C28—C29—C30—C31 −0.7 (3)
C8—C9—C10—C11 177.64 (16) C29—C30—C31—C26 −0.8 (3)
C9—C10—C11—C12 0.0 (3) C27—C26—C31—C30 2.1 (3)
C10—C11—C12—C13 1.0 (3) C23—C26—C31—C30 −176.33 (15)
C11—C12—C13—C14 −0.6 (3) C24—N25—C32—C37 143.82 (17)
C12—C13—C14—C9 −0.7 (3) C22—N25—C32—C37 −33.0 (2)
C10—C9—C14—C13 1.7 (3) C24—N25—C32—C33 −36.6 (2)
C8—C9—C14—C13 −177.26 (16) C22—N25—C32—C33 146.66 (16)
C4—C3—C15—C20 41.98 (19) C37—C32—C33—C34 0.9 (3)
C2—C3—C15—C20 −80.61 (18) N25—C32—C33—C34 −178.74 (15)
C4—C3—C15—C16 −134.62 (15) C32—C33—C34—C35 0.9 (3)
C2—C3—C15—C16 102.79 (17) C38—O6—C35—C34 −0.9 (3)
C20—C15—C16—C17 0.0 (3) C38—O6—C35—C36 178.2 (2)
C3—C15—C16—C17 176.73 (17) C33—C34—C35—O6 176.89 (17)
C15—C16—C17—C18 0.8 (3) C33—C34—C35—C36 −2.2 (3)
C16—C17—C18—C19 −1.2 (4) O6—C35—C36—C37 −177.39 (16)
C17—C18—C19—C20 0.9 (4) C34—C35—C36—C37 1.8 (3)
C16—C15—C20—C19 −0.3 (2) C35—C36—C37—C32 0.0 (3)
C3—C15—C20—C19 −176.93 (16) C33—C32—C37—C36 −1.3 (2)
C18—C19—C20—C15 −0.1 (3) N25—C32—C37—C36 178.29 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.898 (19) 2.314 (18) 2.7378 (18) 108.7 (14)
C7—H7B···O3i 0.96 2.48 3.145 (2) 126.
C14—H14···O5ii 0.93 2.60 3.359 (2) 139.
C30—H30···O1iii 0.93 2.57 3.240 (2) 129.

Symmetry codes: (i) −x, −y+2, −z; (ii) x−1, y, z; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2439).

References

  1. Alcaide, B., Almendros, P., Salgado, N. R. & Rodrigues-Vicente, A. (2000). J. Org. Chem.65, 4453–4455. [DOI] [PubMed]
  2. Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.
  3. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  7. Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808029875/cv2439sup1.cif

e-64-o1993-sup1.cif (28.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029875/cv2439Isup2.hkl

e-64-o1993-Isup2.hkl (253.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES