Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 6;64(Pt 10):o1902–o1903. doi: 10.1107/S1600536808027888

3-O-Benzhydryl-2,5-dide­oxy-2,5-imino-2-C-methyl-l-lyxono-1,4-lactone

Filipa P da Cruz a, K Victoria Booth a,*, George W J Fleet a, David J Watkin b
PMCID: PMC2959362  PMID: 21201113

Abstract

The title bicyclic lactone, C19H19NO3, is an inter­mediate in the synthesis of chiral α-methyl­prolines and branched C-methyl pyrrolidines; the absolute configuration was determined by the use of d-erythronolactone as the starting material. It exhibits no unusual crystal packing features, and each mol­ecule acts as a donor and acceptor for one C—H⋯O hydrogen bond.

Related literature

For use of carbohydrates in synthesis see: Monneret & Florent (1994); Ireland et al. (1983); Hotchkiss et al. (2006, 2007a ,b ); Dukhan et al. (2005); Rao et al. (2008); Punzo et al. (2005a ,b ); Da Cruz et al. (2008). For related crystallographic literature see: Larson (1970); Prince (1982); Watkin (1994). graphic file with name e-64-o1902-scheme1.jpg

Experimental

Crystal data

  • C19H19NO3

  • M r = 309.36

  • Orthorhombic, Inline graphic

  • a = 9.0336 (2) Å

  • b = 10.0498 (2) Å

  • c = 17.5941 (4) Å

  • V = 1597.30 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.30 × 0.25 × 0.25 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) T min = 0.94, T max = 0.98

  • 25603 measured reflections

  • 2071 independent reflections

  • 1411 reflections with I > 2σ(I)

  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.101

  • S = 0.86

  • 2071 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: COLLECT (Nonius, 1997-2001).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536808027888/cs2089sup1.cif

e-64-o1902-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027888/cs2089Isup2.hkl

e-64-o1902-Isup2.hkl (103.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H201⋯O10i 0.93 2.36 3.293 (3) 174

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support (to FPC) provided by the Fundacao para a Ciencia e Tecnologia of Portugal is gratefully acknowledged. We also thank the Oxford University Crystallography Service for use of the instruments.

supplementary crystallographic information

Comment

Carbon-branched sugar lactones have hitherto been rarely used for the synthesis of enantiopure chiral targets (Monneret & Florent, 1994; Ireland et al., 1983). 2-C-Methyl-D-ribonolactone has become readily available in large amounts (Hotchkiss et al., 2007a) and has been used in the synthesis of branched α-C-nucleosides (Dukhan et al., 2005), 4-C-methylpentuloses (Rao et al., 2008) and branched imino sugars (Hotchkiss et al., 2007b). Derivatives of 2-C-methyl-D-arabinonolactone, such as 2, are accessible from D-erythronolactone 1 by addition of methyl magnesium bromide followed by further reaction with sodium cyanide (Hotchkiss et al., 2006; Punzo et al., 2005a). The tertiary alcohol 2 may be efficiently converted into the ribo-azide 3, the structure of which has been confirmed by X-ray crystallographic analysis (Da Cruz et al., 2008; Punzo et al., 2005b). The relative stereochemistry of 4 is firmly established in this paper by X-ray crystallographic analysis and the absolute configuration is defined by the use of D-erythronolactone 1 as the starting material.

The title compound exhibits no unusual crystal packing features. Each molecule acts as a donor and acceptor for one hydrogen bond, forming chains approximately parallel to the a-axis. A suggested hydrogen bond [N7 - H1 - O10] has been ignored in the packing diagram as it exceeds the limits of standard hydrogen bond length (2.52 Å)

Experimental

The title compound was recrystallized from cyclohexane and diethyl ether: m.p. 116–118°C; [α]D21 -26.0 (c, 1.0 in MeCN).

Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged. The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.

Fig. 1.

Synthetic scheme.

Fig. 2.

Fig. 2.

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 3.

Fig. 3.

Packing diagram showing hydrogen bonded chains running parallel to the a-axis.

Crystal data

C19H19NO3 F(000) = 656
Mr = 309.36 Dx = 1.286 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 6711 reflections
a = 9.0336 (2) Å θ = 5–27°
b = 10.0498 (2) Å µ = 0.09 mm1
c = 17.5941 (4) Å T = 150 K
V = 1597.30 (6) Å3 Block, colourless
Z = 4 0.30 × 0.25 × 0.25 mm

Data collection

Nonius KappaCCD area-detector diffractometer 1411 reflections with I > 2σ(I)
graphite Rint = 0.053
ω scans θmax = 27.5°, θmin = 5.2°
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) h = −11→11
Tmin = 0.94, Tmax = 0.98 k = −13→12
25603 measured reflections l = −22→22
2071 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.029 Method, part 1, Chebychev polynomial, (Watkin, 1994) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 16.5 25.4 13.4 3.97
wR(F2) = 0.101 (Δ/σ)max = 0.000186
S = 0.86 Δρmax = 0.21 e Å3
2071 reflections Δρmin = −0.21 e Å3
212 parameters Extinction correction: Larson (1970), Equation 22
0 restraints Extinction coefficient: 420 (70)
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.68597 (16) 0.81026 (14) 0.31734 (9) 0.0272
C2 0.6994 (2) 0.69016 (19) 0.27608 (12) 0.0242
C3 0.7190 (3) 0.5647 (2) 0.32511 (13) 0.0286
O4 0.76321 (17) 0.46691 (14) 0.26720 (9) 0.0310
C5 0.8514 (3) 0.5332 (2) 0.21745 (12) 0.0301
C6 0.8569 (2) 0.6776 (2) 0.24385 (12) 0.0281
N7 0.9525 (2) 0.6653 (2) 0.31282 (12) 0.0325
C8 0.8577 (3) 0.5979 (2) 0.37011 (13) 0.0337
C9 0.9106 (3) 0.7768 (3) 0.18667 (15) 0.0392
O10 0.9132 (2) 0.47855 (18) 0.16574 (10) 0.0420
C11 0.5358 (2) 0.8483 (2) 0.33392 (12) 0.0251
C12 0.5418 (2) 0.9877 (2) 0.36769 (12) 0.0266
C13 0.6550 (3) 1.0751 (2) 0.34846 (13) 0.0315
C14 0.6565 (3) 1.2033 (2) 0.37762 (14) 0.0370
C15 0.5459 (3) 1.2459 (2) 0.42665 (15) 0.0406
C16 0.4328 (3) 1.1595 (2) 0.44577 (15) 0.0402
C17 0.4305 (3) 1.0309 (2) 0.41629 (13) 0.0344
C18 0.4604 (2) 0.74727 (19) 0.38447 (11) 0.0253
C19 0.5194 (3) 0.7164 (2) 0.45543 (12) 0.0322
C20 0.4554 (3) 0.6179 (3) 0.50012 (13) 0.0405
C21 0.3303 (3) 0.5504 (2) 0.47385 (16) 0.0422
C22 0.2698 (3) 0.5832 (2) 0.40451 (16) 0.0397
C23 0.3342 (3) 0.6812 (2) 0.35977 (13) 0.0312
H21 0.6217 0.6791 0.2367 0.0282*
H31 0.6344 0.5365 0.3548 0.0341*
H81 0.8335 0.6581 0.4126 0.0399*
H82 0.9062 0.5176 0.3880 0.0400*
H91 1.0125 0.7635 0.1745 0.0585*
H92 0.9002 0.8665 0.2083 0.0596*
H93 0.8509 0.7721 0.1411 0.0587*
H111 0.4814 0.8523 0.2851 0.0297*
H131 0.7306 1.0474 0.3158 0.0374*
H141 0.7337 1.2628 0.3636 0.0445*
H151 0.5485 1.3315 0.4472 0.0487*
H161 0.3564 1.1873 0.4788 0.0478*
H171 0.3527 0.9733 0.4299 0.0420*
H191 0.6040 0.7642 0.4731 0.0384*
H201 0.4969 0.5968 0.5471 0.0498*
H211 0.2866 0.4832 0.5036 0.0514*
H221 0.1848 0.5371 0.3861 0.0482*
H231 0.2913 0.7017 0.3118 0.0394*
H1 0.980 (4) 0.748 (3) 0.3251 (17) 0.0433*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0237 (7) 0.0228 (7) 0.0350 (7) 0.0012 (6) 0.0009 (6) −0.0054 (6)
C2 0.0247 (9) 0.0202 (9) 0.0278 (9) −0.0005 (8) 0.0007 (8) −0.0031 (8)
C3 0.0329 (11) 0.0225 (9) 0.0303 (10) 0.0008 (8) 0.0044 (9) −0.0034 (8)
O4 0.0330 (8) 0.0242 (7) 0.0359 (8) 0.0010 (6) 0.0024 (7) −0.0046 (7)
C5 0.0280 (10) 0.0300 (10) 0.0324 (10) 0.0045 (9) −0.0011 (9) −0.0022 (9)
C6 0.0243 (10) 0.0261 (9) 0.0340 (10) 0.0013 (8) 0.0015 (8) −0.0012 (9)
N7 0.0264 (9) 0.0306 (9) 0.0404 (10) 0.0011 (8) −0.0073 (8) −0.0026 (8)
C8 0.0375 (12) 0.0306 (11) 0.0331 (11) 0.0063 (10) −0.0040 (10) 0.0005 (9)
C9 0.0358 (12) 0.0361 (12) 0.0457 (13) −0.0005 (10) 0.0122 (11) 0.0078 (11)
O10 0.0462 (10) 0.0399 (9) 0.0398 (9) 0.0087 (8) 0.0086 (8) −0.0084 (8)
C11 0.0224 (9) 0.0270 (9) 0.0260 (9) 0.0031 (8) −0.0017 (8) −0.0001 (8)
C12 0.0285 (10) 0.0247 (9) 0.0265 (9) 0.0045 (8) −0.0011 (8) 0.0008 (8)
C13 0.0307 (11) 0.0267 (10) 0.0372 (11) 0.0034 (9) 0.0025 (10) 0.0025 (9)
C14 0.0385 (12) 0.0246 (10) 0.0478 (13) −0.0016 (10) 0.0034 (11) 0.0045 (10)
C15 0.0496 (15) 0.0239 (11) 0.0482 (14) 0.0065 (10) 0.0007 (12) −0.0049 (9)
C16 0.0421 (14) 0.0335 (12) 0.0452 (13) 0.0062 (11) 0.0100 (11) −0.0051 (10)
C17 0.0361 (12) 0.0289 (11) 0.0383 (12) 0.0023 (10) 0.0079 (10) −0.0004 (9)
C18 0.0265 (10) 0.0230 (9) 0.0265 (10) 0.0029 (8) 0.0018 (9) −0.0030 (8)
C19 0.0408 (13) 0.0287 (10) 0.0272 (10) 0.0053 (11) −0.0017 (10) −0.0039 (8)
C20 0.0570 (16) 0.0362 (12) 0.0283 (10) 0.0138 (11) 0.0069 (12) 0.0020 (10)
C21 0.0474 (14) 0.0292 (11) 0.0501 (14) 0.0055 (11) 0.0209 (13) 0.0051 (10)
C22 0.0348 (12) 0.0299 (11) 0.0544 (15) −0.0019 (10) 0.0093 (12) −0.0035 (11)
C23 0.0284 (10) 0.0295 (10) 0.0356 (10) 0.0009 (8) 0.0004 (9) −0.0038 (9)

Geometric parameters (Å, °)

O1—C2 1.414 (2) C12—C13 1.390 (3)
O1—C11 1.439 (2) C12—C17 1.389 (3)
C2—C3 1.538 (3) C13—C14 1.387 (3)
C2—C6 1.537 (3) C13—H131 0.935
C2—H21 0.992 C14—C15 1.388 (4)
C3—O4 1.471 (2) C14—H141 0.951
C3—C8 1.519 (3) C15—C16 1.382 (4)
C3—H31 0.968 C15—H151 0.934
O4—C5 1.358 (3) C16—C17 1.393 (3)
C5—C6 1.524 (3) C16—H161 0.945
C5—O10 1.200 (3) C17—H171 0.941
C6—N7 1.495 (3) C18—C19 1.393 (3)
C6—C9 1.497 (3) C18—C23 1.389 (3)
N7—C8 1.486 (3) C19—C20 1.390 (4)
N7—H1 0.89 (3) C19—H191 0.954
C8—H81 0.986 C20—C21 1.397 (4)
C8—H82 0.971 C20—H201 0.932
C9—H91 0.955 C21—C22 1.377 (4)
C9—H92 0.983 C21—H211 0.942
C9—H93 0.968 C22—C23 1.389 (4)
C11—C12 1.523 (3) C22—H221 0.954
C11—C18 1.512 (3) C23—H231 0.952
C11—H111 0.990
C2—O1—C11 114.34 (15) C12—C11—C18 113.84 (17)
O1—C2—C3 114.94 (16) O1—C11—H111 107.6
O1—C2—C6 109.83 (16) C12—C11—H111 108.5
C3—C2—C6 91.88 (16) C18—C11—H111 108.3
O1—C2—H21 113.2 C11—C12—C13 120.81 (19)
C3—C2—H21 112.4 C11—C12—C17 120.2 (2)
C6—C2—H21 112.8 C13—C12—C17 119.0 (2)
C2—C3—O4 100.99 (16) C12—C13—C14 120.3 (2)
C2—C3—C8 101.98 (17) C12—C13—H131 119.9
O4—C3—C8 106.51 (17) C14—C13—H131 119.8
C2—C3—H31 116.9 C13—C14—C15 120.6 (2)
O4—C3—H31 113.0 C13—C14—H141 119.7
C8—C3—H31 115.7 C15—C14—H141 119.7
C3—O4—C5 106.11 (16) C14—C15—C16 119.4 (2)
O4—C5—C6 106.84 (17) C14—C15—H151 120.5
O4—C5—O10 122.5 (2) C16—C15—H151 120.2
C6—C5—O10 130.6 (2) C15—C16—C17 120.2 (2)
C2—C6—C5 99.24 (16) C15—C16—H161 120.3
C2—C6—N7 104.02 (17) C17—C16—H161 119.5
C5—C6—N7 100.82 (17) C16—C17—C12 120.6 (2)
C2—C6—C9 119.55 (18) C16—C17—H171 119.2
C5—C6—C9 116.07 (19) C12—C17—H171 120.3
N7—C6—C9 114.42 (19) C11—C18—C19 120.3 (2)
C6—N7—C8 104.77 (16) C11—C18—C23 120.47 (19)
C6—N7—H1 106 (2) C19—C18—C23 119.2 (2)
C8—N7—H1 115 (2) C18—C19—C20 120.4 (2)
C3—C8—N7 102.82 (18) C18—C19—H191 119.1
C3—C8—H81 110.3 C20—C19—H191 120.5
N7—C8—H81 111.3 C19—C20—C21 119.7 (2)
C3—C8—H82 111.0 C19—C20—H201 119.8
N7—C8—H82 109.7 C21—C20—H201 120.5
H81—C8—H82 111.3 C20—C21—C22 119.9 (2)
C6—C9—H91 111.7 C20—C21—H211 120.3
C6—C9—H92 108.6 C22—C21—H211 119.9
H91—C9—H92 107.9 C21—C22—C23 120.4 (3)
C6—C9—H93 110.2 C21—C22—H221 120.3
H91—C9—H93 110.1 C23—C22—H221 119.3
H92—C9—H93 108.2 C18—C23—C22 120.4 (2)
O1—C11—C12 106.90 (17) C18—C23—H231 120.5
O1—C11—C18 111.45 (16) C22—C23—H231 119.1

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C20—H201···O10i 0.93 2.36 3.293 (3) 174
N7—H1···O10ii 0.89 (2) 2.52 (3) 3.395 (3) 168

Symmetry codes: (i) −x+3/2, −y+1, z+1/2; (ii) −x+2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2089).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  3. Da Cruz, F. P., Horne, G. & Fleet, G. W. J. (2008). In preparation.
  4. Dukhan, D., Bosc, E., Peyronnet, J., Storer, R. & Gosselin, G. (2005). Nucleosides, Nucleotides Nucleic Acids, 24, 577–580. [DOI] [PubMed]
  5. Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett.47, 315–318.
  6. Hotchkiss, D. J., Kato, A., Odell, B., Claridge, T. D. W. & Fleet, G. W. J. (2007b). Tetrahedron Asymmetry, 18, 500–512.
  7. Hotchkiss, D. J., Soengas, R., Booth, K. V., Weymouth-Wilson, A. C., Eastwick-Field, V. & Fleet, G. W. J. (2007a). Tetrahedron Lett.48, 517–520.
  8. Ireland, R. E., Courtney, L. & Fitzsimmons, B. J. (1983). J. Org. Chem.48, 5186–5198.
  9. Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
  10. Monneret, C. & Florent, J. C. (1994). Synlett, pp. 305–318.
  11. Nonius (1997–2001). COLLECT Nonius BV, Delft, The Netherlands.
  12. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  13. Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science Springer-Verlag, New York.
  14. Punzo, F., Watkin, D. J., Jenkinson, S. F., Cruz, F. P. & Fleet, G. W. J. (2005b). Acta Cryst. E61, o511–o512.
  15. Punzo, F., Watkin, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2005a). Acta Cryst. E61, o127–o129.
  16. Rao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., da Cruz, F. P., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Lett.49, 3316–3321.
  17. Watkin, D. (1994). Acta Cryst. A50, 411–437.
  18. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, UK.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536808027888/cs2089sup1.cif

e-64-o1902-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027888/cs2089Isup2.hkl

e-64-o1902-Isup2.hkl (103.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES