Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 6;64(Pt 10):m1231. doi: 10.1107/S1600536808026068

Diaqua­bis(4-bromo-2-formyl­phenolato-κ2 O,O′)cobalt(II)

Yu Xiao a,*, Min Zhang a
PMCID: PMC2959384  PMID: 21200991

Abstract

In the title complex, [Co(C7H4BrO2)2(H2O)2], the CoII ion, which lies on a crystallographic inversion center, is coordin­ated by four O atoms from two bidentate 4-bromo-2-formyl­phenolate ligands and two O atoms from two water ligands in a slightly distorted octa­hedral environment. In the crystal structure, one-dimensional chains are formed through inter­molecular O—H⋯O hydrogen bonds, which are further linked into a two-dimensional network through Br⋯Br inter­actions [Br⋯Br = 3.772 (4) Å].

Related literature

For related literature, see: Cohen et al. (1964); Desiraju (1989); Mathews & Manohar (1991); Willey et al. (1994); Zaman et al. (2004); Zhang et al. (2007); Zordan et al. (2005); Chen et al. (2008).graphic file with name e-64-m1231-scheme1.jpg

Experimental

Crystal data

  • [Co(C7H4BrO2)2(H2O)2]

  • M r = 494.99

  • Monoclinic, Inline graphic

  • a = 29.527 (5) Å

  • b = 4.7406 (8) Å

  • c = 11.6314 (18) Å

  • β = 103.162 (3)°

  • V = 1585.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.15 mm−1

  • T = 293 (2) K

  • 0.21 × 0.19 × 0.19 mm

Data collection

  • Bruker SMART-CCD diffractometer

  • Absorption correction: none

  • 3884 measured reflections

  • 1553 independent reflections

  • 1290 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.095

  • S = 1.04

  • 1553 reflections

  • 106 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808026068/lh2677sup1.cif

e-64-m1231-sup1.cif (14.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026068/lh2677Isup2.hkl

e-64-m1231-Isup2.hkl (76.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Co1—O2 2.013 (2)
Co1—O1 2.099 (2)
Co1—O3 2.149 (3)
O2i—Co1—O2 180
O2—Co1—O1 87.86 (10)
O2—Co1—O1i 92.14 (10)
O1—Co1—O1i 180
O2—Co1—O3i 90.20 (10)
O1—Co1—O3i 86.83 (10)
O2—Co1—O3 89.80 (10)
O1—Co1—O3 93.17 (10)
O3i—Co1—O3 180

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1ii 0.85 2.12 2.842 (4) 142
O3—H3B⋯O2iii 0.85 1.93 2.725 (4) 155

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We acknowledge financial support by the Guangxi Key Laboratory of Environmental Engineering, Protection and Assessment, Guangxi, People’s Republic of China.

supplementary crystallographic information

Comment

Halogens have a ubiquitous presence in both inorganic and organic chemistry. Schiff bases of bromo substituents on aromatic groups have aroused increasing interest in recent years because these halogenated compounds are an attractive target for use in supramolecular chemistry and crystal engineering wherein the halogen atoms are directly involved in forming intermolecular interactions (Cohen et al., 1964, Zordan et al., 2005; Desiraju, et al. 1989, Zaman et al., 2004; Zhang, et al., 2007, Chen, et al., 2008). The title compound, (I), contains the bromo ligand 5-bromo-2-hydroxy-benzaldehyde, with one Br atom accessible at the periphery of each ligand.

In the molecular structure of (I), the CoII ion is coordinated by four O atoms from two bidentate 5-bromo-2-hydroxy-benzaldehyde ligands and two O atoms from two H2O ligands forming a slightly distorted octahedral geometry (Fig. 1). In the crystal structure, 1-D chains are formed through O–H···O hydrogen bonds (O3···O1i, 2.842 (4)Å; O3···O2ii, 2.725 (4); symmetry codes: (i)-x, -y-1, -z+1; (ii) x, y-1, z). Each molecule of (I) forms eight hydrogen bonds, four of which are donor hydrogen bonds and four are acceptor hydrogen bonds. The 1-D chains are further linked into a 2-D network via Br1···Br1 interactions. The shortest Br1···Br1 distance is 3.772 Å, (Mathews & Manohar, 1991; Willey et al., 1994) observed between Br1 and Br1iii, Br1 and Br1iv [symmetry codes: (iii) 1/2-x,-1/2+y,1/2-z; (iv) 1/2-x,1/2+y,1/2-z] .

Experimental

Distilled water (30 ml) containing 5-bromo-2-hydroxy-benzaldehyde (0.201 g, 1 mmol) was dropwise added to an aqueous solution containing amino-methanesulfonic acid (0.111 g, 1 mmol) and sodium hydroxide (0.040 g, 1 mmol) with stirred during 10 min. After stirring for 1 h, an aqueous solution of cobalt chloride (0.237 g, 1 mmol) was added to the resulting solution and stirred for 2 h and filtrate. the filtration was left to stand at room temperature. After 12 days, red crystals were produced from the filtrate (yield: 76.4 %, based on Co).

Refinement

H atoms were positioned geometrically and were treated as riding atoms, with C–H distances of 0.93 Å and Uiso(H) = 1.2 Ueq(C), and with and O–H distance of 0.85 Å and Uiso(H) = 1.5 Ueq(O) .

Figures

Fig. 1.

Fig. 1.

A view of (I), showing 30% probability displacement ellipsoids [symmetry code: (A) -x, -y, -z+1]

Fig. 2.

Fig. 2.

1-D chain of (I). Dashed lines indicate hydrogen bonds.

Fig. 3.

Fig. 3.

2-D structure of (I). Blue dashed lines indicate Br..Br interactions and yellow dashed lnies show hydrogen bonds.

Crystal data

[Co(C7H4BrO2)2(H2O)2] F(000) = 964
Mr = 494.99 Dx = 2.074 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 3884 reflections
a = 29.527 (5) Å θ = 2.8–26.0°
b = 4.7406 (8) Å µ = 6.15 mm1
c = 11.6314 (18) Å T = 293 K
β = 103.162 (3)° Prism, red
V = 1585.3 (4) Å3 0.21 × 0.19 × 0.19 mm
Z = 4

Data collection

Bruker SMART-CCD diffractometer 1290 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.033
graphite θmax = 26.0°, θmin = 2.8°
φ and ω scans h = −27→36
3884 measured reflections k = −5→5
1553 independent reflections l = −13→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0409P)2 + 2.4257P] where P = (Fo2 + 2Fc2)/3
1553 reflections (Δ/σ)max < 0.001
106 parameters Δρmax = 0.55 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.0000 0.0000 0.5000 0.0288 (2)
Br1 0.222905 (17) 0.41219 (14) 0.34123 (5) 0.0652 (2)
O1 0.03315 (9) −0.2051 (5) 0.3818 (2) 0.0354 (6)
O2 0.05893 (9) 0.2221 (5) 0.5574 (2) 0.0333 (6)
O3 0.02353 (10) −0.3049 (5) 0.6373 (2) 0.0377 (6)
H3B 0.0416 −0.4195 0.6135 0.057*
H3 0.0003 −0.3971 0.6490 0.057*
C1 0.09460 (13) 0.2474 (8) 0.5103 (3) 0.0309 (8)
C2 0.13013 (14) 0.4390 (9) 0.5592 (4) 0.0405 (10)
H2 0.1280 0.5390 0.6266 0.049*
C3 0.16768 (15) 0.4831 (10) 0.5110 (4) 0.0447 (11)
H3A 0.1908 0.6094 0.5463 0.054*
C4 0.17148 (14) 0.3393 (10) 0.4089 (4) 0.0421 (10)
C5 0.13865 (13) 0.1447 (9) 0.3593 (3) 0.0377 (9)
H5 0.1419 0.0447 0.2928 0.045*
C6 0.09989 (13) 0.0949 (8) 0.4087 (3) 0.0304 (8)
C7 0.06866 (15) −0.1242 (8) 0.3544 (3) 0.0367 (9)
H7 0.0763 −0.2157 0.2907 0.044*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0330 (4) 0.0264 (4) 0.0284 (4) −0.0043 (3) 0.0104 (3) −0.0022 (3)
Br1 0.0404 (3) 0.1038 (5) 0.0569 (3) −0.0135 (3) 0.0226 (2) 0.0066 (3)
O1 0.0411 (16) 0.0322 (14) 0.0362 (15) −0.0047 (12) 0.0157 (12) −0.0056 (11)
O2 0.0323 (15) 0.0353 (15) 0.0340 (14) −0.0067 (12) 0.0114 (12) −0.0080 (11)
O3 0.0474 (17) 0.0312 (14) 0.0364 (15) −0.0001 (12) 0.0138 (13) −0.0008 (11)
C1 0.031 (2) 0.032 (2) 0.030 (2) 0.0007 (16) 0.0078 (16) 0.0034 (15)
C2 0.037 (2) 0.049 (3) 0.036 (2) −0.0060 (19) 0.0098 (19) −0.0067 (18)
C3 0.035 (2) 0.054 (3) 0.043 (3) −0.012 (2) 0.006 (2) 0.001 (2)
C4 0.031 (2) 0.056 (3) 0.041 (2) −0.003 (2) 0.0123 (18) 0.009 (2)
C5 0.037 (2) 0.048 (3) 0.031 (2) 0.0001 (19) 0.0122 (17) 0.0015 (18)
C6 0.034 (2) 0.0287 (19) 0.0287 (19) 0.0008 (16) 0.0062 (16) 0.0003 (15)
C7 0.045 (3) 0.038 (2) 0.032 (2) 0.0022 (19) 0.0177 (18) −0.0033 (17)

Geometric parameters (Å, °)

Co1—O2i 2.013 (2) C1—C2 1.406 (6)
Co1—O2 2.013 (2) C1—C6 1.424 (5)
Co1—O1 2.099 (2) C2—C3 1.368 (6)
Co1—O1i 2.099 (2) C2—H2 0.9300
Co1—O3i 2.149 (3) C3—C4 1.395 (6)
Co1—O3 2.149 (3) C3—H3A 0.9300
Br1—C4 1.894 (4) C4—C5 1.367 (6)
O1—C7 1.225 (5) C5—C6 1.412 (5)
O2—C1 1.299 (4) C5—H5 0.9300
O3—H3B 0.8500 C6—C7 1.436 (6)
O3—H3 0.8500 C7—H7 0.9300
O2i—Co1—O2 180 O2—C1—C6 123.8 (3)
O2i—Co1—O1 92.14 (10) C2—C1—C6 116.8 (3)
O2—Co1—O1 87.86 (10) C3—C2—C1 122.1 (4)
O2i—Co1—O1i 87.86 (10) C3—C2—H2 118.9
O2—Co1—O1i 92.14 (10) C1—C2—H2 118.9
O1—Co1—O1i 180 C2—C3—C4 120.3 (4)
O2i—Co1—O3i 89.80 (10) C2—C3—H3A 119.9
O2—Co1—O3i 90.20 (10) C4—C3—H3A 119.9
O1—Co1—O3i 86.83 (10) C5—C4—C3 120.1 (4)
O1i—Co1—O3i 93.17 (10) C5—C4—Br1 120.4 (3)
O2i—Co1—O3 90.20 (10) C3—C4—Br1 119.5 (3)
O2—Co1—O3 89.80 (10) C4—C5—C6 120.3 (4)
O1—Co1—O3 93.17 (10) C4—C5—H5 119.9
O1i—Co1—O3 86.83 (10) C6—C5—H5 119.9
O3i—Co1—O3 180 C5—C6—C1 120.3 (3)
C7—O1—Co1 125.4 (2) C5—C6—C7 116.2 (3)
C1—O2—Co1 129.1 (2) C1—C6—C7 123.5 (3)
Co1—O3—H3B 107.9 O1—C7—C6 127.9 (4)
Co1—O3—H3 109.2 O1—C7—H7 116.1
H3B—O3—H3 108.2 C6—C7—H7 116.1
O2—C1—C2 119.4 (3)

Symmetry codes: (i) −x, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3···O1ii 0.85 2.12 2.842 (4) 142.
O3—H3B···O2iii 0.85 1.93 2.725 (4) 155.

Symmetry codes: (ii) −x, −y−1, −z+1; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2677).

References

  1. Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Chen, F.-Y., Zhang, S.-H. & Ge, C.-M. (2008). Acta Cryst. E64, m1068. [DOI] [PMC free article] [PubMed]
  4. Cohen, M. D., Schmidt, G. M. J. & Sonntag, F. I. (1964). J. Chem. Soc. pp. 2000–2013.
  5. Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids Amsterdam: Elsevier.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Mathews, I. I. & Manohar, H. (1991). Acta Cryst. C47, 1621–1624.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Willey, G. R., Palin, J., Lakin, M. T. & Alcock, N. W. (1994). Transition Met. Chem.19, 187–190.
  10. Zaman, B., Udachin, K. A. & Ripmeester, J. A. (2004). Cryst. Growth Des.4, 585–589.
  11. Zhang, S.-H., Li, G.-Z., Feng, X.-Z. & Liu, Z. (2007). Acta Cryst. E63, m1319–m1320.
  12. Zordan, F., Brammer, L. & Sherwood, P. (2005). J. Am. Chem. Soc.127, 5979–5989. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808026068/lh2677sup1.cif

e-64-m1231-sup1.cif (14.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026068/lh2677Isup2.hkl

e-64-m1231-Isup2.hkl (76.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES