Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 13;64(Pt 10):o1934. doi: 10.1107/S1600536808028882

4-Chloro-N-(2-chloro­phen­yl)benzamide

Aamer Saeed a,*, Rasheed Ahmad Khera a, Kazuma Gotoh b, Hiroyuki Ishida b
PMCID: PMC2959385  PMID: 21201142

Abstract

In the mol­ecular structure of the title compound, C13H9Cl2NO, the amide N—C=O plane makes dihedral angles of 31.53 (8) and 36.23 (8)°, respectively, with the 4-chloro- and 2-chloro­phenyl rings. The dihedral angle between the two benzene rings is 6.25 (8)°. The mol­ecules are stacked in columns along the b axis through inter­molecular N—H⋯O hydrogen bonds. The columns are further connected by weak C—H⋯O hydrogen bonds. The compound is not isomorphous with the fluoro analogue.

Related literature

For general background, see: Capdeville et al. (2002); Chopra & Row (2005); Ho et al. (2002); Igawa et al. (1999); Jackson et al. (1994); Makino et al. (2003); Zhichkin et al. (2007). For related structures, see: Chopra & Row (2005).graphic file with name e-64-o1934-scheme1.jpg

Experimental

Crystal data

  • C13H9Cl2NO

  • M r = 266.13

  • Monoclinic, Inline graphic

  • a = 10.7913 (14) Å

  • b = 4.8078 (6) Å

  • c = 23.570 (3) Å

  • β = 97.718 (3)°

  • V = 1211.8 (3) Å3

  • Z = 4

  • Mo- Kα radiation

  • μ = 0.52 mm−1

  • T = 223 (1) K

  • 0.35 × 0.31 × 0.05 mm

Data collection

  • Rigaku R-AXIS RAPID II diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.884, T max = 0.975

  • 14924 measured reflections

  • 3527 independent reflections

  • 1847 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.154

  • S = 1.00

  • 3527 reflections

  • 158 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808028882/bh2189sup1.cif

e-64-o1934-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028882/bh2189Isup2.hkl

e-64-o1934-Isup2.hkl (173KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.85 (2) 2.12 (2) 2.901 (2) 154 (2)
C2—H2⋯O1ii 0.94 2.59 3.456 (3) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

AS gratefully acknowledges a research grant from Quaid-I-Azam University, Islamabad.

supplementary crystallographic information

Comment

The benzanilide core is present in compounds with a wide range of biological activities, and for this reason it has been called a privileged structure. Benzanilides serve as intermediates towards benzothiadiazin-4-ones (Makino et al., 2003), benzodiazepine-2,5-diones (Ho et al., 2002), and 2,3-disubstituted 3H-quinazoline-4-ones (Zhichkin et al., 2007). Benzanilides have established their efficacy as centroid elements of ligands that bind to a wide variety of receptor types. Thus, benzanilides containing aminoalkyl groups originally designed as peptidomimetic compounds, have been incorporated in an Arg-Gly-Asp cyclic peptide, yielding a high affinity GPIIb/IIIa ligand (Jackson et al., 1994). Imatinib is an ATP-site binding kinase inhibitor and platelet-derived growth factor receptor kinase (Capdeville et al., 2002). Benzamides have activities as acetyl-CoA carboxylase and farnesyl transferase inhibitors (Igawa et al., 1999).

In the crystal structure of the title compound (Fig. 1), the molecules are stacked in columns along the b cell-axis through intermolecular N—H···O hydrogen bonds (Table 1). The columns are also connected by weak C—H···O hydrogen bonds (Fig. 2). No significant π–π interactions are observed in the columns. The title compound is not isomorphous with the F analogue compound, 4-fluoro-N-(2-fluorophenyl)-benzamide, which exhibits a dimorphic behaviour, with non-centrosymmetric space groups P21 and Pca21 (Chopra & Row, 2005). The different crystal structures of the F analogue are probably originated from the intermolecular C—H···F interactions.

Experimental

4-Chorobenzoyl chloride (5.4 mmol) in CHCl3 was treated with 2-chloroaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 4 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aq. 1 M HCl and saturated aq. NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in CHCl3 afforded the title compound (84%). Anal. calcd. for C13H9Cl2NO: C 58.67, H 3.41, N 5.26%; found: C 58.23, H 3.46, N 5.08%.

Refinement

The N-bound H atom was located in a difference map and refined freely. Other H atoms were positioned geometrically (C—H = 0.94 Å) and treated as riding atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. The displacement ellipsoids are drawn at the 40% probability level.

Fig. 2.

Fig. 2.

Crystal packing, viewed along the b axis. Intermolecular C—H···O hydrogen bonds are shown as dashed lines.

Crystal data

C13H9Cl2NO F(000) = 544.00
Mr = 266.13 Dx = 1.459 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2yn Cell parameters from 8924 reflections
a = 10.7913 (14) Å θ = 3.0–30.0°
b = 4.8078 (6) Å µ = 0.52 mm1
c = 23.570 (3) Å T = 223 K
β = 97.718 (3)° Plate, colourless
V = 1211.8 (3) Å3 0.35 × 0.31 × 0.05 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID II diffractometer 1847 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1 Rint = 0.042
ω scans θmax = 30.0°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −15→15
Tmin = 0.884, Tmax = 0.975 k = −6→6
14924 measured reflections l = −31→33
3527 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full 0 constraints
R[F2 > 2σ(F2)] = 0.051 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.079P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
3527 reflections Δρmax = 0.23 e Å3
158 parameters Δρmin = −0.39 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.01681 (5) 0.18996 (11) 0.55784 (3) 0.0701 (2)
Cl2 0.40856 (8) 0.29994 (18) 0.27592 (3) 0.1044 (3)
O1 0.31900 (14) 0.9176 (3) 0.52035 (6) 0.0704 (4)
N1 0.24949 (15) 0.4883 (3) 0.54060 (7) 0.0533 (4)
H1 0.246 (2) 0.321 (5) 0.5293 (10) 0.074 (7)*
C1 0.32607 (17) 0.5666 (4) 0.45021 (8) 0.0523 (4)
C2 0.4236 (2) 0.6900 (4) 0.42566 (10) 0.0650 (6)
H2 0.4721 0.8303 0.4456 0.078*
C3 0.4487 (2) 0.6070 (5) 0.37257 (11) 0.0725 (6)
H3 0.5152 0.6882 0.3565 0.087*
C4 0.3765 (2) 0.4053 (5) 0.34303 (10) 0.0695 (6)
C5 0.2787 (2) 0.2815 (5) 0.36606 (10) 0.0680 (6)
H5 0.2295 0.1444 0.3454 0.082*
C6 0.25440 (19) 0.3623 (4) 0.41982 (9) 0.0599 (5)
H6 0.1887 0.2780 0.4359 0.072*
C7 0.29897 (17) 0.6734 (3) 0.50645 (9) 0.0528 (5)
C8 0.20311 (18) 0.5546 (4) 0.59237 (8) 0.0531 (4)
C9 0.09424 (19) 0.4263 (4) 0.60525 (8) 0.0554 (5)
C10 0.0457 (2) 0.4875 (5) 0.65537 (9) 0.0727 (6)
H10 −0.0267 0.3965 0.6639 0.087*
C11 0.1041 (3) 0.6823 (6) 0.69252 (11) 0.0870 (8)
H11 0.0701 0.7295 0.7259 0.104*
C12 0.2115 (3) 0.8069 (5) 0.68088 (11) 0.0833 (8)
H12 0.2517 0.9368 0.7069 0.100*
C13 0.2623 (2) 0.7451 (4) 0.63118 (10) 0.0694 (6)
H13 0.3366 0.8322 0.6239 0.083*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0638 (4) 0.0686 (4) 0.0792 (4) −0.0099 (2) 0.0140 (3) −0.0038 (3)
Cl2 0.1190 (6) 0.1252 (6) 0.0763 (5) 0.0111 (5) 0.0399 (4) −0.0089 (4)
O1 0.0844 (10) 0.0411 (7) 0.0895 (11) −0.0058 (7) 0.0258 (8) −0.0078 (7)
N1 0.0588 (10) 0.0416 (8) 0.0610 (10) −0.0015 (7) 0.0138 (7) −0.0073 (7)
C1 0.0492 (11) 0.0427 (9) 0.0664 (12) 0.0048 (8) 0.0125 (9) 0.0010 (8)
C2 0.0556 (12) 0.0544 (11) 0.0883 (16) −0.0030 (9) 0.0215 (11) −0.0019 (10)
C3 0.0654 (14) 0.0695 (13) 0.0890 (16) 0.0007 (11) 0.0333 (12) 0.0051 (12)
C4 0.0710 (14) 0.0737 (14) 0.0667 (13) 0.0155 (11) 0.0193 (11) 0.0037 (11)
C5 0.0673 (14) 0.0718 (13) 0.0649 (14) −0.0011 (11) 0.0085 (10) −0.0083 (10)
C6 0.0560 (12) 0.0605 (11) 0.0647 (12) −0.0051 (9) 0.0137 (9) −0.0010 (9)
C7 0.0468 (10) 0.0411 (9) 0.0714 (12) 0.0028 (7) 0.0114 (9) −0.0016 (8)
C8 0.0581 (11) 0.0459 (9) 0.0546 (11) 0.0081 (8) 0.0050 (8) −0.0026 (8)
C9 0.0584 (12) 0.0542 (10) 0.0536 (10) 0.0086 (9) 0.0078 (9) 0.0019 (9)
C10 0.0785 (15) 0.0826 (14) 0.0596 (12) 0.0170 (12) 0.0185 (11) 0.0073 (12)
C11 0.111 (2) 0.0959 (19) 0.0554 (14) 0.0370 (17) 0.0142 (14) −0.0010 (13)
C12 0.105 (2) 0.0804 (16) 0.0593 (14) 0.0151 (15) −0.0073 (13) −0.0202 (11)
C13 0.0756 (15) 0.0632 (12) 0.0665 (14) 0.0028 (11) −0.0010 (11) −0.0106 (10)

Geometric parameters (Å, °)

Cl1—C9 1.729 (2) C5—C6 1.384 (3)
Cl2—C4 1.739 (2) C5—H5 0.9400
O1—C7 1.230 (2) C6—H6 0.9400
N1—C7 1.357 (2) C8—C13 1.388 (3)
N1—C8 1.416 (2) C8—C9 1.396 (3)
N1—H1 0.84 (2) C9—C10 1.387 (3)
C1—C6 1.388 (3) C10—C11 1.376 (4)
C1—C2 1.399 (3) C10—H10 0.9400
C1—C7 1.487 (3) C11—C12 1.364 (4)
C2—C3 1.375 (3) C11—H11 0.9400
C2—H2 0.9400 C12—C13 1.391 (3)
C3—C4 1.373 (3) C12—H12 0.9400
C3—H3 0.9400 C13—H13 0.9400
C4—C5 1.384 (3)
C7—N1—C8 125.20 (16) O1—C7—N1 122.49 (18)
C7—N1—H1 116.3 (16) O1—C7—C1 121.24 (16)
C8—N1—H1 118.4 (16) N1—C7—C1 116.26 (16)
C6—C1—C2 118.98 (18) C13—C8—C9 118.34 (19)
C6—C1—C7 122.80 (16) C13—C8—N1 122.11 (19)
C2—C1—C7 118.10 (18) C9—C8—N1 119.55 (17)
C3—C2—C1 120.3 (2) C10—C9—C8 121.1 (2)
C3—C2—H2 119.8 C10—C9—Cl1 119.00 (17)
C1—C2—H2 119.8 C8—C9—Cl1 119.86 (15)
C4—C3—C2 119.9 (2) C11—C10—C9 119.5 (2)
C4—C3—H3 120.0 C11—C10—H10 120.2
C2—C3—H3 120.0 C9—C10—H10 120.2
C3—C4—C5 121.0 (2) C12—C11—C10 120.0 (2)
C3—C4—Cl2 119.89 (18) C12—C11—H11 120.0
C5—C4—Cl2 119.1 (2) C10—C11—H11 120.0
C6—C5—C4 119.1 (2) C11—C12—C13 121.2 (2)
C6—C5—H5 120.4 C11—C12—H12 119.4
C4—C5—H5 120.4 C13—C12—H12 119.4
C5—C6—C1 120.66 (19) C8—C13—C12 119.8 (2)
C5—C6—H6 119.7 C8—C13—H13 120.1
C1—C6—H6 119.7 C12—C13—H13 120.1
C6—C1—C2—C3 −0.8 (3) C2—C1—C7—N1 −151.15 (18)
C7—C1—C2—C3 −177.11 (19) C7—N1—C8—C13 −39.9 (3)
C1—C2—C3—C4 1.1 (3) C7—N1—C8—C9 140.0 (2)
C2—C3—C4—C5 −0.5 (3) C13—C8—C9—C10 0.3 (3)
C2—C3—C4—Cl2 −179.88 (18) N1—C8—C9—C10 −179.58 (17)
C3—C4—C5—C6 −0.4 (3) C13—C8—C9—Cl1 179.47 (15)
Cl2—C4—C5—C6 179.04 (17) N1—C8—C9—Cl1 −0.4 (2)
C4—C5—C6—C1 0.6 (3) C8—C9—C10—C11 1.4 (3)
C2—C1—C6—C5 0.0 (3) Cl1—C9—C10—C11 −177.82 (17)
C7—C1—C6—C5 176.07 (19) C9—C10—C11—C12 −2.2 (4)
C8—N1—C7—O1 7.0 (3) C10—C11—C12—C13 1.4 (4)
C8—N1—C7—C1 −171.95 (16) C9—C8—C13—C12 −1.1 (3)
C6—C1—C7—O1 −146.2 (2) N1—C8—C13—C12 178.72 (19)
C2—C1—C7—O1 29.9 (3) C11—C12—C13—C8 0.3 (4)
C6—C1—C7—N1 32.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.85 (2) 2.12 (2) 2.901 (2) 154 (2)
C2—H2···O1ii 0.94 2.59 3.456 (3) 153
C13—H13···O1 0.94 2.46 2.884 (3) 108

Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2189).

References

  1. Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. (2002). Nat. Rev. Drug Discov.1, 493–502. [DOI] [PubMed]
  2. Chopra, D. & Row, T. N. G. (2005). Cryst. Growth Des.5, 1679–1681.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  5. Ho, T.-I., Chen, W.-S., Hsu, C.-W., Tsai, Y.-M. & Fang, J.-M. (2002). Heterocycles, 57, 1501–1506.
  6. Igawa, H., Nishimura, M., Okada, K. & Nakamura, T. (1999). Jpn Patent Kokai Tokkyo Koho. JP 11 171 848.
  7. Jackson, S., DeGrado, W., Dwivedi, A., Parthasarathy, A., Higley, A., Krywko, J., Rockwell, A., Markwalder, J., Wells, G., Wexler, R., Mousa, S. & Harlow, R. (1994). J. Am. Chem. Soc.116, 3220–3230.
  8. Makino, S., Nakanishi, E. & Tsuji, T. (2003). Bull. Korean Chem. Soc.24, 389–392.
  9. Rigaku/MSC (2004). CrystalStructure and PROCESS-AUTO Rigaku/MSC, The Woodlands, Texas, USA.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  12. Zhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett.9, 1415–1418. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808028882/bh2189sup1.cif

e-64-o1934-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028882/bh2189Isup2.hkl

e-64-o1934-Isup2.hkl (173KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES