Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 20;64(Pt 10):m1286. doi: 10.1107/S1600536808029073

trans-Diaqua­bis[5-carb­oxy-2-(3-pyridyl)-1H-imidazole-4-carboxyl­ato-κ2 N 3,O 4]manganese(II)

Li-Zhuang Chen a,*
PMCID: PMC2959396  PMID: 21201031

Abstract

In the title compound, [Mn(C10H6N3O4)2(H2O)2], synthesized by hydro­thermal reaction, the MnII ion lies on an inversion centre and displays a distorted octa­hedral coordination geometry defined by the two imidazole N atoms and two carboxylate O atoms of the two trans-standing chelate ligands, and two O atoms of the water mol­ecules. A two-dimensional supra­molecular architecture is formed via N—H⋯O, O—H⋯N and O—H⋯O hydrogen-bonding inter­actions.

Related literature

For the chemistry of imidazoles, see: Xiao et al. (2004); Zhang et al. (2004); Lu et al. (2006).graphic file with name e-64-m1286-scheme1.jpg

Experimental

Crystal data

  • [Mn(C10H6N3O4)2(H2O)2]

  • M r = 555.33

  • Triclinic, Inline graphic

  • a = 6.9574 (7) Å

  • b = 8.5636 (7) Å

  • c = 9.4409 (16) Å

  • α = 81.90 (3)°

  • β = 83.42 (4)°

  • γ = 72.10 (2)°

  • V = 528.41 (11) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 298 (2) K

  • 0.25 × 0.20 × 0.20 mm

Data collection

  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.845, T max = 0.869

  • 5416 measured reflections

  • 2378 independent reflections

  • 1871 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.165

  • S = 1.11

  • 2378 reflections

  • 175 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808029073/bx2177sup1.cif

e-64-m1286-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029073/bx2177Isup2.hkl

e-64-m1286-Isup2.hkl (116.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4i 0.86 2.00 2.840 (3) 164
O5—H5⋯N3ii 0.82 1.97 2.779 (3) 171
O5—H5B⋯O3iii 0.839 (17) 2.074 (18) 2.908 (3) 173 (3)
O3—H3⋯O2 0.82 1.69 2.456 (3) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

supplementary crystallographic information

Comment

N-Heterocyclic carboxylic acids, such as imidazole-4,5-dicarboxylic acid, are recognized as efficient N,O-donors, exhibiting diverse modes of coordination (Zhang et al., 2004; Xiao et al., 2004; Lu et al., 2006). In this work, we have chosen 2-Pyridin-3-yl-1H-imidazole-4,5-dicarboxylic acid as the building block to obtain the title compound, and we present its crystal structure here. MnII ion lies on an inversion centre and displaying distorted octahedral coordination geometry defined by the two imidazole N atoms, two O toms of the carboxylate groups and two O atoms of the water molecules. The pyridine ring and imidazole rings are twisted from each other by a dihedral angle of 20.78 (2)° (Fig. 1). The crystal structure is stabilized by intermolecular O—H···N, O—H···O and N—H···O, hydrogen bonds. A two-dimensional supramolecular architecture is formed via hydrogen-bond interactions (Table 1 and Fig. 2).

Experimental

A mixture of 2-Pyridin-3-yl-1H-imidazole-4,5-dicarboxylic acid (0.1 mmol, 23 mg) and MnCl2 (20 mg, 0.1 mmol) and water (1 ml) sealed in a glass tube was maintained at 100°C for 3 d then cooled to room temperature to obtain suitable single crystals for X-ray analysis.

Refinement

All H atoms attached to C atoms, O atoms and N atoms except H5B were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), O—H = 0.82 Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C and N) or Uiso(H) = 1.5Ueq(O). H5B atom of H2O were located in difference Fourier maps.

Figures

Fig. 1.

Fig. 1.

A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Unlabelled atoms are related to labelled atoms by the symmetry code ( -x+1, -y+1, -z).

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the b axis and all hydrogen atoms not involved in hydrogen bonding (dashed lines) were omitted for clarity.

Crystal data

[Mn(C10H6N3O4)2(H2O)2] Z = 1
Mr = 555.33 F(000) = 283
Triclinic, P1 Dx = 1.745 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.9574 (7) Å Cell parameters from 1463 reflections
b = 8.5636 (7) Å θ = 3.1–27.5°
c = 9.4409 (16) Å µ = 0.70 mm1
α = 81.90 (3)° T = 298 K
β = 83.42 (4)° Block, colourless
γ = 72.10 (2)° 0.25 × 0.20 × 0.20 mm
V = 528.41 (11) Å3

Data collection

Rigaku Mercury2 diffractometer 2378 independent reflections
Radiation source: fine-focus sealed tube 1871 reflections with I > 2σ(I)
graphite Rint = 0.029
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5°, θmin = 2.5°
ω scans h = −8→8
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −11→11
Tmin = 0.845, Tmax = 0.869 l = −12→12
5416 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165 H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.1003P)2 + 0.0122P] where P = (Fo2 + 2Fc2)/3
2378 reflections (Δ/σ)max < 0.001
175 parameters Δρmax = 0.54 e Å3
2 restraints Δρmin = −0.44 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.5000 0.5000 0.0000 0.0299 (2)
C1 0.3266 (4) 0.8677 (4) −0.0160 (3) 0.0290 (6)
C2 0.2634 (4) 0.8148 (3) 0.1332 (3) 0.0253 (6)
C3 0.1577 (4) 0.9082 (3) 0.2405 (3) 0.0260 (6)
C4 0.0487 (5) 1.0861 (4) 0.2425 (3) 0.0308 (6)
C5 0.2472 (4) 0.6428 (3) 0.3206 (3) 0.0229 (5)
C6 0.2698 (4) 0.4926 (3) 0.4203 (3) 0.0253 (6)
C7 0.3049 (5) 0.3401 (4) 0.3713 (3) 0.0336 (7)
H7A 0.3120 0.3314 0.2737 0.040*
C8 0.3291 (5) 0.2013 (4) 0.4703 (3) 0.0369 (7)
H8A 0.3592 0.0972 0.4399 0.044*
C9 0.3080 (5) 0.2195 (4) 0.6156 (3) 0.0345 (7)
H9A 0.3215 0.1261 0.6817 0.041*
N3 0.2692 (4) 0.3661 (3) 0.6640 (3) 0.0332 (6)
C11 0.2491 (5) 0.4986 (4) 0.5688 (3) 0.0300 (6)
H11A 0.2196 0.6010 0.6025 0.036*
N1 0.3172 (3) 0.6504 (3) 0.1834 (2) 0.0255 (5)
N2 0.1531 (4) 0.7971 (3) 0.3573 (2) 0.0269 (5)
H2A 0.0992 0.8207 0.4412 0.032*
O1 0.4330 (4) 0.7595 (3) −0.0912 (2) 0.0380 (5)
O2 0.2722 (4) 1.0220 (3) −0.0599 (2) 0.0408 (6)
O3 0.0641 (4) 1.1816 (3) 0.1292 (2) 0.0397 (6)
H3 0.1602 1.1348 0.0764 0.060*
O4 −0.0526 (4) 1.1310 (3) 0.3540 (2) 0.0457 (6)
O5 0.7793 (4) 0.5087 (3) 0.0738 (2) 0.0414 (6)
H5 0.7544 0.5539 0.1476 0.062*
H5B 0.867 (5) 0.416 (3) 0.083 (3) 0.042 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.0369 (4) 0.0247 (4) 0.0204 (3) 0.0026 (3) 0.0007 (3) −0.0056 (2)
C1 0.0337 (15) 0.0254 (14) 0.0204 (13) 0.0004 (11) 0.0015 (11) −0.0017 (10)
C2 0.0307 (14) 0.0207 (13) 0.0197 (13) −0.0006 (10) −0.0005 (11) −0.0035 (10)
C3 0.0315 (14) 0.0231 (14) 0.0205 (12) −0.0040 (11) 0.0015 (11) −0.0049 (10)
C4 0.0366 (16) 0.0242 (14) 0.0257 (14) 0.0005 (12) −0.0005 (12) −0.0061 (11)
C5 0.0233 (13) 0.0235 (13) 0.0184 (12) −0.0021 (10) 0.0020 (10) −0.0047 (9)
C6 0.0270 (13) 0.0265 (14) 0.0208 (13) −0.0063 (11) 0.0028 (11) −0.0041 (10)
C7 0.0455 (17) 0.0288 (15) 0.0212 (14) −0.0052 (13) 0.0077 (13) −0.0064 (11)
C8 0.0493 (19) 0.0225 (14) 0.0336 (16) −0.0033 (12) −0.0003 (14) −0.0048 (11)
C9 0.0404 (17) 0.0279 (15) 0.0303 (16) −0.0074 (13) 0.0003 (13) 0.0039 (12)
N3 0.0419 (15) 0.0327 (13) 0.0209 (12) −0.0075 (11) 0.0023 (10) −0.0012 (9)
C11 0.0388 (16) 0.0271 (14) 0.0226 (14) −0.0065 (12) −0.0030 (12) −0.0041 (11)
N1 0.0310 (12) 0.0214 (11) 0.0200 (11) −0.0021 (9) −0.0007 (10) −0.0028 (9)
N2 0.0334 (12) 0.0246 (12) 0.0185 (11) −0.0032 (10) 0.0038 (9) −0.0058 (8)
O1 0.0503 (14) 0.0304 (11) 0.0210 (10) 0.0023 (10) 0.0077 (9) −0.0028 (8)
O2 0.0578 (14) 0.0251 (11) 0.0257 (11) 0.0011 (10) 0.0082 (10) 0.0035 (8)
O3 0.0508 (14) 0.0229 (11) 0.0330 (12) 0.0038 (9) 0.0059 (10) −0.0031 (8)
O4 0.0650 (16) 0.0303 (12) 0.0291 (12) 0.0059 (11) 0.0040 (11) −0.0123 (9)
O5 0.0423 (13) 0.0434 (14) 0.0309 (12) 0.0012 (11) −0.0015 (10) −0.0119 (10)

Geometric parameters (Å, °)

Mn1—O5i 2.163 (2) C5—N2 1.356 (3)
Mn1—O5 2.163 (2) C5—C6 1.460 (4)
Mn1—O1i 2.194 (2) C6—C7 1.389 (4)
Mn1—O1 2.194 (2) C6—C11 1.399 (4)
Mn1—N1i 2.322 (2) C7—C8 1.383 (4)
Mn1—N1 2.322 (2) C7—H7A 0.9300
C1—O1 1.246 (3) C8—C9 1.388 (4)
C1—O2 1.279 (3) C8—H8A 0.9300
C1—C2 1.477 (4) C9—N3 1.335 (4)
C2—N1 1.370 (3) C9—H9A 0.9300
C2—C3 1.380 (4) N3—C11 1.326 (4)
C3—N2 1.355 (3) C11—H11A 0.9300
C3—C4 1.480 (4) N2—H2A 0.8600
C4—O4 1.238 (3) O3—H3 0.8200
C4—O3 1.267 (4) O5—H5 0.8200
C5—N1 1.331 (3) O5—H5B 0.839 (17)
O5i—Mn1—O5 180.00 (11) N2—C5—C6 123.9 (2)
O5i—Mn1—O1i 90.51 (10) C7—C6—C11 117.7 (3)
O5—Mn1—O1i 89.49 (10) C7—C6—C5 121.3 (2)
O5i—Mn1—O1 89.49 (10) C11—C6—C5 121.0 (2)
O5—Mn1—O1 90.51 (10) C8—C7—C6 118.9 (3)
O1i—Mn1—O1 180.0 C8—C7—H7A 120.6
O5i—Mn1—N1i 90.00 (8) C6—C7—H7A 120.6
O5—Mn1—N1i 90.00 (8) C7—C8—C9 119.2 (3)
O1i—Mn1—N1i 74.86 (8) C7—C8—H8A 120.4
O1—Mn1—N1i 105.14 (8) C9—C8—H8A 120.4
O5i—Mn1—N1 90.00 (8) N3—C9—C8 122.5 (3)
O5—Mn1—N1 90.00 (8) N3—C9—H9A 118.8
O1i—Mn1—N1 105.14 (8) C8—C9—H9A 118.8
O1—Mn1—N1 74.86 (8) C11—N3—C9 118.2 (3)
N1i—Mn1—N1 180.0 N3—C11—C6 123.5 (3)
O1—C1—O2 123.7 (3) N3—C11—H11A 118.2
O1—C1—C2 118.1 (3) C6—C11—H11A 118.2
O2—C1—C2 118.2 (3) C5—N1—C2 105.7 (2)
N1—C2—C3 110.3 (2) C5—N1—Mn1 145.47 (18)
N1—C2—C1 119.8 (2) C2—N1—Mn1 108.75 (16)
C3—C2—C1 129.9 (3) C3—N2—C5 109.1 (2)
N2—C3—C2 104.8 (2) C3—N2—H2A 125.5
N2—C3—C4 121.9 (2) C5—N2—H2A 125.5
C2—C3—C4 133.1 (3) C1—O1—Mn1 118.36 (18)
O4—C4—O3 124.5 (3) C4—O3—H3 109.5
O4—C4—C3 117.8 (3) Mn1—O5—H5 109.5
O3—C4—C3 117.7 (2) Mn1—O5—H5B 113 (2)
N1—C5—N2 110.0 (2) H5—O5—H5B 112.4
N1—C5—C6 126.0 (2)
O1—C1—C2—N1 −1.9 (4) C6—C5—N1—C2 −179.2 (3)
O2—C1—C2—N1 179.4 (3) N2—C5—N1—Mn1 176.6 (2)
O1—C1—C2—C3 175.6 (3) C6—C5—N1—Mn1 −2.2 (5)
O2—C1—C2—C3 −3.1 (5) C3—C2—N1—C5 −0.6 (3)
N1—C2—C3—N2 1.4 (3) C1—C2—N1—C5 177.3 (3)
C1—C2—C3—N2 −176.2 (3) C3—C2—N1—Mn1 −178.84 (19)
N1—C2—C3—C4 −173.1 (3) C1—C2—N1—Mn1 −0.9 (3)
C1—C2—C3—C4 9.3 (6) O5i—Mn1—N1—C5 95.6 (3)
N2—C3—C4—O4 −1.9 (5) O5—Mn1—N1—C5 −84.4 (3)
C2—C3—C4—O4 171.9 (3) O1i—Mn1—N1—C5 5.0 (4)
N2—C3—C4—O3 178.8 (3) O1—Mn1—N1—C5 −175.0 (4)
C2—C3—C4—O3 −7.4 (5) O5i—Mn1—N1—C2 −87.49 (19)
N1—C5—C6—C7 −22.7 (4) O5—Mn1—N1—C2 92.51 (19)
N2—C5—C6—C7 158.6 (3) O1i—Mn1—N1—C2 −178.01 (18)
N1—C5—C6—C11 159.7 (3) O1—Mn1—N1—C2 1.99 (18)
N2—C5—C6—C11 −18.9 (4) C2—C3—N2—C5 −1.7 (3)
C11—C6—C7—C8 −3.7 (4) C4—C3—N2—C5 173.6 (3)
C5—C6—C7—C8 178.7 (3) N1—C5—N2—C3 1.4 (3)
C6—C7—C8—C9 3.1 (5) C6—C5—N2—C3 −179.8 (2)
C7—C8—C9—N3 −1.4 (5) O2—C1—O1—Mn1 −177.4 (2)
C8—C9—N3—C11 0.4 (5) C2—C1—O1—Mn1 3.9 (4)
C9—N3—C11—C6 −1.1 (5) O5i—Mn1—O1—C1 86.8 (2)
C7—C6—C11—N3 2.8 (4) O5—Mn1—O1—C1 −93.2 (2)
C5—C6—C11—N3 −179.6 (3) N1i—Mn1—O1—C1 176.7 (2)
N2—C5—N1—C2 −0.4 (3) N1—Mn1—O1—C1 −3.3 (2)

Symmetry codes: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O4ii 0.86 2.00 2.840 (3) 164.
O5—H5···N3iii 0.82 1.97 2.779 (3) 171.
O5—H5B···O3iv 0.84 (2) 2.07 (2) 2.908 (3) 173 (3)
O3—H3···O2 0.82 1.69 2.456 (3) 155.

Symmetry codes: (ii) −x, −y+2, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x+1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2177).

References

  1. Lu, W.-G., Su, C.-Y., Lu, T.-B., Jiang, L. & Chen, J.-M. (2006). J. Am. Chem. Soc.128, 34–35. [DOI] [PubMed]
  2. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Xiao, H.-P., Li, X.-H. & Shi, Q. (2004). Acta Cryst. E60, m1519–m1521.
  5. Zhang, X.-M., Fang, R.-Q., Wu, H.-S. & Ng, S. W. (2004). Acta Cryst. E60, m12–m13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808029073/bx2177sup1.cif

e-64-m1286-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029073/bx2177Isup2.hkl

e-64-m1286-Isup2.hkl (116.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES