Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 17;64(Pt 10):o1952. doi: 10.1107/S1600536808029255

2-(Mesitylmethylsulfanyl)pyridine N-oxide monohydrate

B Ravindran Durai Nayagam a,*, Samuel Robinson Jebas b, H Johnson Jeyakumar c, Dieter Schollmeyer d
PMCID: PMC2959397  PMID: 21201156

Abstract

In the title compound, C15H17NOS·H2O, the benzene and pyridine rings form a dihedral angle of 71.18 (2)°. The intra­molecular S⋯O distance [2.737 (3) Å] is shorter than expected and, in terms of hybridization principles, the N—C—S angle [114.1 (2)°] is smaller than expected. The crystal structure is stabilized by inter­molecular O—H⋯O and weak C—H⋯O hydrogen bonds. In addition, weak π–π stacking inter­actions with a centroid–centroid distance of 3.778 (3) Å are also observed.

Related literature

For related structures, see: Jebas et al. (2005); Hartung et al. (1996); Ravindran Durai Nayagam et al. (2008). For biological activities of N-oxide derivatives, see: Bovin et al. (1992); Katsuyuki et al. (1991); Leonard et al. (1955); Lobana & Bhatia (1989); Symons & West (1985). For bond-length data, see: Allen et al. (1987).graphic file with name e-64-o1952-scheme1.jpg

Experimental

Crystal data

  • C15H17NOS·H2O

  • M r = 277.37

  • Monoclinic, Inline graphic

  • a = 12.358 (7) Å

  • b = 15.404 (6) Å

  • c = 7.748 (5) Å

  • β = 106.40 (2)°

  • V = 1415.0 (13) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.01 mm−1

  • T = 193 (2) K

  • 0.50 × 0.20 × 0.05 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (CORINC; Dräger & Gattow, 1971) T min = 0.67, T max = 0.99 (expected range = 0.612–0.904)

  • 2896 measured reflections

  • 2684 independent reflections

  • 2048 reflections with I > 2σ(I)

  • R int = 0.067

  • 3 standard reflections frequency: 60 min intensity decay: 3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.190

  • S = 1.06

  • 2684 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.79 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808029255/lh2692sup1.cif

e-64-o1952-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029255/lh2692Isup2.hkl

e-64-o1952-Isup2.hkl (129.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O18 0.84 2.05 2.875 (4) 165
O1W—H2W⋯O18i 0.84 2.17 2.869 (4) 141
C16—H16⋯O1W 0.95 2.58 3.226 (6) 125

Symmetry code: (i) Inline graphic.

Acknowledgments

RDN thanks the University Grants Commission, India, for a Teacher Fellowship.

supplementary crystallographic information

Comment

N-oxides and their derivatives show a broad spectrum of biological activity such as antifungal, antimicrobial and antibacterial activities (Lobana & Bhatia, 1989; Symons et al., 1985). These compounds are also found to be involved in DNA strand scission under physiological conditions (Katsuyuki et al., 1991; Bovin et al., 1992). Pyridine N-oxides bearing a sulfur group in the 2 position display significant antimicrobial activity (Leonard et al., 1955). In view of the importance of N-oxides, we have previously reported the crystal structures of N–oxide derivatives (Jebas et al., 2005; Ravindran Durai Nayagam, et al., 2008). As an extension of our work, we report here the crystal structure of the title compound.

The asymmetric unit of (I), consists of one molecule 2-(1-oxo-2-pyridylsulfanylmethyl) mesitylene and a water molecule. The bond lengths and angles agree well with the N-oxide derivatives reported earlier (Jebas et al., 2005; Ravindran Durai Nayagam et al., 2008). The N—O bond length is in good agreement with the mean value of 1.304 (15) Å reported in the literature for pyridine N-oxides (Allen et al., 1987).

The pyridine ring and the benzene rings are essentially individually planar with the maximum deviation from planarity being 0.011 (2) Å for atom C2 and -0.010 (2) Å for atom C12 respectively. The dihedral angle formed by the benzene ring (C1–C6) and the pyridine ring (C12–C16/N17) is 71.18 (2)°. The atom O18 attached to atom N17 of the pyridine ring is essentially co-planar; the relevant torsion angle being O18—N17—C16—C15 = 178.9 (3)°.

The crystal structure is stabilized by intermolecular O—H···O and C—H···O hydrogen bonds. In addition, π–π interactions with Cg1···Cg1i = 3.778 (3) Å (Cg1 is the centroid defined by ring atoms C12–C16/N17) [symmetry code:(i) 1-x,-y,1-z] are observed. As in the structure of 2-(1-phenyl-4-penten-l-yl-thio)pyridine N-oxide (Hartung et al., 1996) a short intramolecular S···O [2.737 (3) Å] distance is observed.

Experimental

A mixture of mono(bromomethyl)mesitylene (0.213 g, 1 mmol) and 1-hydroxypyridine-2-thione sodium salt (0.149,1 mmol) in water (30 ml) and methanol (30 ml) was heated at 333 K with stirring for 30 min. The compound formed was filtered off, and dried. The compound was dissolved in acetone and water (1: 1v/v) and allowed to undergo slow evaporation. Colourless crystals were obtained after a week

Refinement

After checking for their presence in the Fourier map, all the hydrogen atoms were placed in calculated positions and allowed to ride on their parent atoms with the C—H = 0.95 Å (aromatic); C—H = 0.99 Å(methylene); C—H = 0.98 Å (methyl) and O—H = 0.84 Å with Uiso(H) in the range of 1.2Ueq(C)–1.5Ueq(C,O)methyl.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. Hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound, viewed along the b axis showing hydrogen bonds as dashed lines.

Crystal data

C15H17NOS·H2O F(000) = 592
Mr = 277.37 Dx = 1.302 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 12.358 (7) Å θ = 36–50°
b = 15.404 (6) Å µ = 2.01 mm1
c = 7.748 (5) Å T = 193 K
β = 106.40 (2)° Plate, colourless
V = 1415.0 (13) Å3 0.50 × 0.20 × 0.05 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 2048 reflections with I > 2σ(I)
Radiation source: rotating anode Rint = 0.067
graphite θmax = 70.0°, θmin = 3.7°
ω/2θ scans h = −14→15
Absorption correction: ψ scan (CORINC; Dräger & Gattow, 1971) k = −18→0
Tmin = 0.67, Tmax = 0.99 l = −9→0
2896 measured reflections 3 standard reflections every 60 min
2684 independent reflections intensity decay: 3%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1179P)2 + 0.1489P] where P = (Fo2 + 2Fc2)/3
2684 reflections (Δ/σ)max < 0.001
175 parameters Δρmax = 0.58 e Å3
0 restraints Δρmin = −0.79 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.0724 (3) −0.0867 (2) 0.3741 (4) 0.0305 (7)
C2 0.0757 (3) −0.1748 (2) 0.4252 (4) 0.0336 (7)
C3 −0.0205 (3) −0.2249 (2) 0.3573 (4) 0.0375 (8)
H3 −0.0199 −0.2837 0.3946 0.045*
C4 −0.1170 (3) −0.1924 (2) 0.2377 (4) 0.0376 (8)
C5 −0.1186 (3) −0.1053 (2) 0.1862 (4) 0.0355 (7)
H5 −0.1844 −0.0818 0.1045 0.043*
C6 −0.0247 (3) −0.05268 (19) 0.2537 (4) 0.0314 (7)
C7 0.1771 (3) −0.2149 (2) 0.5531 (5) 0.0469 (9)
H7A 0.1954 −0.1835 0.6678 0.070*
H7B 0.2411 −0.2117 0.5022 0.070*
H7C 0.1612 −0.2758 0.5733 0.070*
C8 −0.2178 (4) −0.2507 (3) 0.1647 (6) 0.0561 (11)
H8A −0.2837 −0.2153 0.1054 0.084*
H8B −0.2332 −0.2833 0.2637 0.084*
H8C −0.2020 −0.2913 0.0775 0.084*
C9 −0.0327 (3) 0.0412 (2) 0.1961 (5) 0.0379 (8)
H9A 0.0247 0.0534 0.1341 0.057*
H9B −0.0202 0.0786 0.3022 0.057*
H9C −0.1078 0.0526 0.1144 0.057*
C10 0.1718 (3) −0.0290 (2) 0.4538 (4) 0.0354 (7)
H10A 0.2203 −0.0556 0.5653 0.042*
H10B 0.1454 0.0280 0.4850 0.042*
S11 0.25245 (7) −0.01425 (5) 0.29196 (10) 0.0343 (3)
C12 0.3569 (3) 0.05537 (19) 0.4133 (4) 0.0300 (7)
C13 0.3783 (3) 0.0803 (2) 0.5928 (4) 0.0364 (7)
H13 0.3343 0.0567 0.6640 0.044*
C14 0.4623 (3) 0.1386 (2) 0.6672 (5) 0.0454 (9)
H14 0.4765 0.1552 0.7897 0.054*
C15 0.5265 (3) 0.1733 (2) 0.5633 (6) 0.0487 (9)
H15 0.5839 0.2147 0.6128 0.058*
C16 0.5057 (3) 0.1469 (2) 0.3886 (6) 0.0446 (9)
H16 0.5501 0.1697 0.3171 0.053*
N17 0.4236 (2) 0.08942 (17) 0.3157 (4) 0.0336 (6)
O18 0.4037 (2) 0.06592 (17) 0.1461 (3) 0.0446 (6)
O1W 0.6227 (3) 0.0815 (2) 0.0886 (4) 0.0610 (8)
H1W 0.5575 0.0690 0.0933 0.091*
H2W 0.6495 0.0394 0.0452 0.091*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0458 (18) 0.0265 (14) 0.0256 (14) −0.0078 (13) 0.0208 (14) −0.0057 (11)
C2 0.0497 (19) 0.0286 (16) 0.0288 (15) −0.0017 (14) 0.0214 (14) −0.0011 (13)
C3 0.057 (2) 0.0265 (15) 0.0356 (17) −0.0102 (14) 0.0246 (16) −0.0070 (13)
C4 0.0480 (19) 0.0392 (17) 0.0332 (16) −0.0162 (15) 0.0239 (15) −0.0141 (14)
C5 0.0420 (18) 0.0388 (18) 0.0300 (16) −0.0035 (14) 0.0171 (14) −0.0055 (13)
C6 0.0492 (19) 0.0263 (15) 0.0255 (14) −0.0026 (13) 0.0217 (14) −0.0050 (12)
C7 0.058 (2) 0.0377 (19) 0.048 (2) 0.0032 (17) 0.0194 (18) 0.0037 (16)
C8 0.062 (3) 0.058 (2) 0.055 (2) −0.030 (2) 0.027 (2) −0.020 (2)
C9 0.060 (2) 0.0264 (16) 0.0334 (16) 0.0007 (14) 0.0230 (16) −0.0007 (12)
C10 0.0476 (19) 0.0363 (16) 0.0261 (15) −0.0109 (14) 0.0167 (14) −0.0030 (13)
S11 0.0424 (5) 0.0364 (5) 0.0281 (4) −0.0087 (3) 0.0164 (3) −0.0048 (3)
C12 0.0309 (15) 0.0228 (14) 0.0361 (16) 0.0022 (12) 0.0091 (13) 0.0048 (12)
C13 0.0443 (18) 0.0318 (16) 0.0312 (16) 0.0004 (14) 0.0075 (14) 0.0038 (13)
C14 0.046 (2) 0.0403 (19) 0.045 (2) 0.0026 (16) 0.0045 (17) −0.0067 (16)
C15 0.0396 (19) 0.039 (2) 0.068 (3) −0.0066 (15) 0.0159 (18) −0.0110 (18)
C16 0.0367 (18) 0.0357 (18) 0.066 (2) −0.0061 (15) 0.0230 (18) −0.0009 (17)
N17 0.0343 (14) 0.0293 (13) 0.0402 (15) 0.0044 (11) 0.0154 (12) 0.0042 (11)
O18 0.0475 (15) 0.0501 (15) 0.0417 (14) −0.0042 (11) 0.0213 (12) 0.0012 (11)
O1W 0.0589 (18) 0.085 (2) 0.0441 (15) −0.0134 (16) 0.0233 (14) −0.0132 (15)

Geometric parameters (Å, °)

C1—C6 1.397 (5) C9—H9B 0.9800
C1—C2 1.411 (4) C9—H9C 0.9800
C1—C10 1.500 (4) C10—S11 1.823 (3)
C2—C3 1.390 (5) C10—H10A 0.9900
C2—C7 1.494 (5) C10—H10B 0.9900
C3—C4 1.381 (5) S11—C12 1.736 (3)
C3—H3 0.9500 C12—N17 1.371 (4)
C4—C5 1.399 (5) C12—C13 1.394 (4)
C4—C8 1.509 (5) C13—C14 1.371 (5)
C5—C6 1.391 (5) C13—H13 0.9500
C5—H5 0.9500 C14—C15 1.388 (6)
C6—C9 1.509 (4) C14—H14 0.9500
C7—H7A 0.9800 C15—C16 1.367 (6)
C7—H7B 0.9800 C15—H15 0.9500
C7—H7C 0.9800 C16—N17 1.345 (4)
C8—H8A 0.9800 C16—H16 0.9500
C8—H8B 0.9800 N17—O18 1.318 (4)
C8—H8C 0.9800 O1W—H1W 0.8400
C9—H9A 0.9800 O1W—H2W 0.8400
C6—C1—C2 120.0 (3) C6—C9—H9B 109.5
C6—C1—C10 120.1 (3) H9A—C9—H9B 109.5
C2—C1—C10 119.9 (3) C6—C9—H9C 109.5
C3—C2—C1 118.3 (3) H9A—C9—H9C 109.5
C3—C2—C7 119.3 (3) H9B—C9—H9C 109.5
C1—C2—C7 122.4 (3) C1—C10—S11 109.5 (2)
C4—C3—C2 122.5 (3) C1—C10—H10A 109.8
C4—C3—H3 118.7 S11—C10—H10A 109.8
C2—C3—H3 118.7 C1—C10—H10B 109.8
C3—C4—C5 118.6 (3) S11—C10—H10B 109.8
C3—C4—C8 120.1 (3) H10A—C10—H10B 108.2
C5—C4—C8 121.3 (4) C12—S11—C10 99.89 (16)
C6—C5—C4 120.6 (3) N17—C12—C13 118.1 (3)
C6—C5—H5 119.7 N17—C12—S11 114.1 (2)
C4—C5—H5 119.7 C13—C12—S11 127.8 (3)
C5—C6—C1 120.0 (3) C14—C13—C12 120.5 (3)
C5—C6—C9 118.0 (3) C14—C13—H13 119.7
C1—C6—C9 122.0 (3) C12—C13—H13 119.7
C2—C7—H7A 109.5 C13—C14—C15 119.9 (4)
C2—C7—H7B 109.5 C13—C14—H14 120.1
H7A—C7—H7B 109.5 C15—C14—H14 120.1
C2—C7—H7C 109.5 C16—C15—C14 118.8 (3)
H7A—C7—H7C 109.5 C16—C15—H15 120.6
H7B—C7—H7C 109.5 C14—C15—H15 120.6
C4—C8—H8A 109.5 N17—C16—C15 121.4 (3)
C4—C8—H8B 109.5 N17—C16—H16 119.3
H8A—C8—H8B 109.5 C15—C16—H16 119.3
C4—C8—H8C 109.5 O18—N17—C16 120.4 (3)
H8A—C8—H8C 109.5 O18—N17—C12 118.2 (3)
H8B—C8—H8C 109.5 C16—N17—C12 121.3 (3)
C6—C9—H9A 109.5 H1W—O1W—H2W 109.5
C6—C1—C2—C3 −2.0 (4) C6—C1—C10—S11 −80.1 (3)
C10—C1—C2—C3 176.0 (3) C2—C1—C10—S11 101.9 (3)
C6—C1—C2—C7 179.9 (3) C1—C10—S11—C12 178.5 (2)
C10—C1—C2—C7 −2.1 (5) C10—S11—C12—N17 −170.9 (2)
C1—C2—C3—C4 2.3 (5) C10—S11—C12—C13 8.2 (3)
C7—C2—C3—C4 −179.6 (3) N17—C12—C13—C14 1.3 (5)
C2—C3—C4—C5 −1.5 (5) S11—C12—C13—C14 −177.7 (3)
C2—C3—C4—C8 178.3 (3) C12—C13—C14—C15 0.2 (5)
C3—C4—C5—C6 0.3 (5) C13—C14—C15—C16 −1.3 (6)
C8—C4—C5—C6 −179.5 (3) C14—C15—C16—N17 1.0 (6)
C4—C5—C6—C1 0.0 (4) C15—C16—N17—O18 178.9 (3)
C4—C5—C6—C9 −178.7 (3) C15—C16—N17—C12 0.5 (5)
C2—C1—C6—C5 0.9 (4) C13—C12—N17—O18 179.9 (3)
C10—C1—C6—C5 −177.1 (3) S11—C12—N17—O18 −0.9 (4)
C2—C1—C6—C9 179.5 (3) C13—C12—N17—C16 −1.7 (5)
C10—C1—C6—C9 1.5 (4) S11—C12—N17—C16 177.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1W···O18 0.84 2.05 2.875 (4) 165.
O1W—H2W···O18i 0.84 2.17 2.869 (4) 141.
C16—H16···O1W 0.95 2.58 3.226 (6) 125

Symmetry codes: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2692).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chem. Fr.129, 145–150.
  3. Dräger, M. & Gattow, G. (1971). Acta Chem. Scand.25, 761–762.
  4. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  5. Hartung, J., Svoboda, I. & Fuess, H. (1996). Acta Cryst C52, 2841–2844.
  6. Jebas, S. R., Balasubramanian, T., Ravidurai, B. & Kumaresan, S. (2005). Acta Cryst. E61, o2677–o2678.
  7. Katsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc.113, 5099–5100.
  8. Leonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261–264. [PubMed]
  9. Lobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res.48, 394–401.
  10. Ravindran Durai Nayagam, B., Jebas, S. R., Grace, S. & Schollmeyer, D. (2008). Acta Cryst E64, o409. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  13. Symons, M. C. R. & West, D.-X. (1985). J. Chem. Soc. Daltan Trans. pp. 379–381.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808029255/lh2692sup1.cif

e-64-o1952-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029255/lh2692Isup2.hkl

e-64-o1952-Isup2.hkl (129.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES