Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 13;64(Pt 10):m1264–m1265. doi: 10.1107/S1600536808028663

Bis(diethyl­enetriamine-κ3 N,N′,N′′)nickel(II) bis­(1,2-dicyanoethene-1,2-dithiolato-κ2 S,S′)nickel(II)

Dao-Peng Zhang a, Hai-Long Wang a, Li-Fang Zhang a,*, Zhong-Hai Ni a
PMCID: PMC2959400  PMID: 21201018

Abstract

The title compound, [Ni(C4H13N3)2][Ni(C4N2S2)2], has been synthesized by the reaction of Ni(ClO4)2·6H2O, diethyl­enetriamine (deta) and Na2[Ni(mnt)2] [mnt = maleonitrile­dithiol­ate(2-)] in methanol. The structure is composed of a [Ni(deta)2]2+ cation and a [Ni(mnt)2]2− anion. The coordination geometry of the NiII ion in the cation is slightly distorted octa­hedral, defined by six N atoms from two deta ligands, while the NiII ion in the anion is four-coordinated by four S atoms from two mnt ligands in a slightly distorted square-planar geometry. The cations and anions are connected by N—H⋯N hydrogen bonds.

Related literature

For related literature, see: Bois et al. (1998); Keum et al. (1992); Miller et al. (1989); Ren et al. (2001); Robertson & Cronin (2002); Simmons et al. (1962). graphic file with name e-64-m1264-scheme1.jpg

Experimental

Crystal data

  • [Ni(C4H13N3)2][Ni(C4N2S2)2]

  • M r = 604.13

  • Monoclinic, Inline graphic

  • a = 9.589 (3) Å

  • b = 16.910 (5) Å

  • c = 16.146 (4) Å

  • β = 97.491 (4)°

  • V = 2595.8 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.80 mm−1

  • T = 273 (2) K

  • 0.19 × 0.17 × 0.15 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.717, T max = 0.766

  • 13610 measured reflections

  • 5065 independent reflections

  • 3393 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.109

  • S = 0.99

  • 5065 reflections

  • 329 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808028663/hy2151sup1.cif

e-64-m1264-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028663/hy2151Isup2.hkl

e-64-m1264-Isup2.hkl (248.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Ni1—S1 2.1739 (12)
Ni1—S2 2.1617 (12)
Ni1—S3 2.1732 (12)
Ni1—S4 2.1658 (12)
Ni2—N5 2.164 (3)
Ni2—N6 2.065 (3)
Ni2—N7 2.150 (4)
Ni2—N8 2.145 (3)
Ni2—N9 2.071 (4)
Ni2—N10 2.151 (3)
S2—Ni1—S4 87.98 (5)
S2—Ni1—S3 168.77 (5)
S4—Ni1—S3 92.72 (4)
S2—Ni1—S1 92.58 (4)
S4—Ni1—S1 170.10 (4)
S3—Ni1—S1 88.65 (4)
N6—Ni2—N9 177.56 (15)
N6—Ni2—N8 98.00 (14)
N9—Ni2—N8 81.73 (14)
N6—Ni2—N7 82.24 (16)
N9—Ni2—N7 95.37 (17)
N8—Ni2—N7 95.96 (15)
N6—Ni2—N10 98.69 (14)
N9—Ni2—N10 81.72 (14)
N8—Ni2—N10 163.04 (16)
N7—Ni2—N10 89.25 (16)
N6—Ni2—N5 81.47 (14)
N9—Ni2—N5 100.96 (15)
N8—Ni2—N5 91.32 (13)
N7—Ni2—N5 162.93 (16)
N10—Ni2—N5 88.20 (14)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯N4i 0.86 (3) 2.30 (4) 3.098 (6) 154 (3)
N5—H5B⋯N2ii 0.86 (3) 2.48 (3) 3.186 (5) 140 (4)
N7—H7A⋯N3iii 0.86 (4) 2.56 (3) 3.207 (7) 134 (3)
N8—H8B⋯N3iii 0.86 (3) 2.48 (4) 3.164 (6) 138 (3)
N9—H9A⋯N1iv 0.86 (2) 2.58 (3) 3.387 (6) 156 (5)
N10—H10C⋯N2ii 0.87 (3) 2.34 (3) 3.198 (5) 173 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by the Natural Science Foundation of China (No. 20701027) and the Postdoctoral Scientific Foundation of China (No. 200704211076).

supplementary crystallographic information

Comment

Bidentate dithiolate ligands form well square-planar complexes with nickel ions in different oxidation states. Due to their unique properties and potential applications in such areas as conducting and magnetic materials, nearinfrared dyes, nonlinear optical materials (Robertson & Cronin, 2002), the ion-pair complexes formed from [M(mnt)2]n- (M = Ni, Pd, Pt or Cu) and transition metal complex cations have been intensively studied (Bois et al., 1998; Miller et al., 1989; Ren et al., 2001). We report here a new ion-pair complex.

The title compound is composed of a [Ni(deta)2]2+ cation and a [Ni(mnt)2]2- anion [deta = diethylenetriamine; mnt = maleonitriledithiolate(2-)] (Fig. 1). In the cation, the NiII ion has a slightly distorted octahedral geometry, formed by six N atoms from two deta ligands, with the Ni—N distances in a range from 2.065 (3) to 2.164 (3) Å (Table 1), which are consistent with the corresponding values in [Ni(en)3][Ni(mnt)2] (en = ethylenediamine) (Keum et al., 1992). The NiII ion in the anion is four-coordinated by four S atoms and these five atoms form a square plane with a mean deviation of 0.161 (6) Å. The Ni—S bond lengths [2.1617 (12)–2.1739 (12) Å] are also in agreement with those found in the above complex. The cations and anions are connected by N—H···N hydrogen bonds (Table 2).

Experimental

The synthesis procedure of the title compound was as following: Ni(ClO4)2.6H2O (0.037 g, 0.10 mmol) was dissolved in methanol (10 ml) at room temperature with stirring and then deta (0.021 g, 0.20 mmol) was added. A solution of Na2[Ni(mnt)2] (0.033 g, 0.10 mmol) (Simmons et al., 1962) in methanol (10 ml) was slowly added to the above solution and the mixture was stirred for another 30 min. After filtering, the filtrate was undisturbed for about two weeks at room temperature in air to produce blue crystals suitable for X-ray diffraction (yield 61.75%, 0.037 g). Analysis, calculated for C16H26N10Ni2S4: C 31.81, H 4.34, N 23.19%; found: C 31.76, H 4.31, N 23.24%.

Refinement

H atoms bound to N atoms were found in difference Fourier maps and refined isotropically, with a restraint of N—H = 0.86 (1) Å. H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Crystal data

[Ni(C4H13N3)2][Ni(C4N2S2)2] F(000) = 1248
Mr = 604.13 Dx = 1.546 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3163 reflections
a = 9.589 (3) Å θ = 2.4–23.8°
b = 16.910 (5) Å µ = 1.80 mm1
c = 16.146 (4) Å T = 273 K
β = 97.491 (4)° Block, blue
V = 2595.8 (13) Å3 0.19 × 0.17 × 0.15 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 5065 independent reflections
Radiation source: fine-focus sealed tube 3393 reflections with I > 2σ(I)
graphite Rint = 0.037
φ and ω scans θmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −11→11
Tmin = 0.717, Tmax = 0.766 k = −20→19
13610 measured reflections l = −17→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.058P)2] where P = (Fo2 + 2Fc2)/3
5065 reflections (Δ/σ)max < 0.001
329 parameters Δρmax = 0.86 e Å3
10 restraints Δρmin = −0.26 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.72467 (5) 0.23459 (3) 0.01993 (3) 0.04722 (16)
Ni2 0.97276 (5) 0.40148 (3) 0.25321 (3) 0.04194 (15)
S1 0.78132 (10) 0.13475 (6) 0.10229 (6) 0.0555 (3)
S2 0.90403 (11) 0.21706 (7) −0.04639 (7) 0.0638 (3)
S3 0.52234 (11) 0.23887 (7) 0.06673 (7) 0.0598 (3)
S4 0.68871 (10) 0.34610 (6) −0.04535 (7) 0.0576 (3)
N1 1.0808 (4) 0.0021 (3) 0.1686 (3) 0.0828 (12)
N2 1.2281 (4) 0.0992 (2) −0.0397 (2) 0.0727 (11)
N3 0.1991 (4) 0.3603 (3) 0.0519 (3) 0.0980 (15)
N4 0.3914 (5) 0.4842 (3) −0.1113 (3) 0.0902 (13)
N5 0.7588 (4) 0.4323 (2) 0.2690 (2) 0.0532 (8)
N6 0.8844 (4) 0.2901 (2) 0.2388 (2) 0.0573 (9)
N7 1.1630 (4) 0.3364 (3) 0.2450 (3) 0.0670 (10)
N8 0.9396 (4) 0.4370 (2) 0.1246 (2) 0.0551 (9)
N9 1.0692 (4) 0.5111 (2) 0.2663 (2) 0.0576 (9)
N10 1.0222 (4) 0.4021 (3) 0.3870 (2) 0.0552 (9)
C1 0.9425 (4) 0.1059 (2) 0.0742 (2) 0.0487 (9)
C2 0.9942 (4) 0.1410 (2) 0.0098 (2) 0.0498 (9)
C3 0.4468 (4) 0.3230 (2) 0.0193 (2) 0.0546 (10)
C4 0.5168 (4) 0.3686 (2) −0.0311 (2) 0.0532 (10)
C5 1.0189 (4) 0.0466 (3) 0.1249 (3) 0.0587 (11)
C6 1.1252 (4) 0.1169 (3) −0.0162 (2) 0.0564 (11)
C7 0.3083 (5) 0.3441 (3) 0.0363 (3) 0.0676 (12)
C8 0.4494 (5) 0.4331 (3) −0.0751 (3) 0.0656 (12)
C9 0.6713 (4) 0.3606 (3) 0.2543 (3) 0.0690 (12)
H9C 0.6357 0.3564 0.1954 0.083*
H9B 0.5916 0.3639 0.2854 0.083*
C10 0.7577 (5) 0.2887 (3) 0.2815 (3) 0.0711 (13)
H10A 0.7841 0.2894 0.3416 0.085*
H10B 0.7039 0.2410 0.2668 0.085*
C11 0.9946 (5) 0.2337 (3) 0.2698 (3) 0.0759 (14)
H11A 0.9634 0.1802 0.2563 0.091*
H11B 1.0161 0.2381 0.3301 0.091*
C12 1.1225 (6) 0.2523 (3) 0.2293 (3) 0.0850 (16)
H12A 1.1994 0.2181 0.2518 0.102*
H12B 1.1030 0.2429 0.1696 0.102*
C13 1.0004 (5) 0.5157 (3) 0.1168 (3) 0.0748 (13)
H13A 0.9436 0.5450 0.0730 0.090*
H13B 1.0944 0.5106 0.1013 0.090*
C14 1.0069 (5) 0.5602 (3) 0.1974 (3) 0.0748 (13)
H14A 1.0627 0.6078 0.1945 0.090*
H14B 0.9129 0.5758 0.2066 0.090*
C15 1.0661 (5) 0.5377 (3) 0.3519 (3) 0.0694 (12)
H15A 0.9721 0.5556 0.3585 0.083*
H15B 1.1303 0.5818 0.3639 0.083*
C16 1.1076 (5) 0.4719 (3) 0.4112 (2) 0.0704 (13)
H16A 1.2063 0.4595 0.4109 0.084*
H16B 1.0943 0.4879 0.4674 0.084*
H8A 0.8544 (16) 0.441 (2) 0.101 (2) 0.051 (11)*
H8B 0.971 (4) 0.4005 (18) 0.095 (2) 0.073 (15)*
H7A 1.219 (4) 0.352 (3) 0.211 (2) 0.090 (17)*
H10C 0.944 (3) 0.406 (3) 0.408 (3) 0.091 (17)*
H5A 0.727 (5) 0.4692 (19) 0.235 (2) 0.093 (18)*
H6A 0.860 (4) 0.281 (2) 0.1865 (8) 0.055 (12)*
H7B 1.217 (4) 0.341 (3) 0.2916 (17) 0.12 (2)*
H10D 1.066 (6) 0.362 (3) 0.409 (4) 0.16 (3)*
H9A 1.1581 (18) 0.503 (4) 0.267 (4) 0.16 (3)*
H5B 0.769 (5) 0.448 (3) 0.3200 (12) 0.101 (18)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0377 (3) 0.0536 (3) 0.0497 (3) 0.0057 (2) 0.0033 (2) −0.0112 (2)
Ni2 0.0429 (3) 0.0502 (3) 0.0324 (2) −0.0003 (2) 0.00373 (19) −0.0015 (2)
S1 0.0412 (5) 0.0638 (7) 0.0642 (6) 0.0081 (5) 0.0164 (5) −0.0001 (5)
S2 0.0514 (6) 0.0822 (8) 0.0599 (6) 0.0189 (6) 0.0160 (5) 0.0104 (6)
S3 0.0503 (6) 0.0652 (7) 0.0663 (7) 0.0126 (5) 0.0161 (5) −0.0012 (5)
S4 0.0451 (6) 0.0601 (7) 0.0667 (7) 0.0028 (5) 0.0040 (5) −0.0026 (5)
N1 0.062 (2) 0.098 (3) 0.093 (3) 0.027 (2) 0.024 (2) 0.027 (2)
N2 0.055 (2) 0.110 (3) 0.055 (2) 0.029 (2) 0.0172 (18) 0.016 (2)
N3 0.078 (3) 0.134 (4) 0.089 (3) 0.048 (3) 0.038 (2) 0.009 (3)
N4 0.097 (3) 0.094 (3) 0.077 (3) 0.032 (3) 0.000 (2) 0.008 (2)
N5 0.048 (2) 0.067 (2) 0.044 (2) 0.0015 (18) 0.0033 (16) −0.0034 (19)
N6 0.067 (2) 0.056 (2) 0.047 (2) −0.0026 (18) −0.0011 (18) −0.0019 (17)
N7 0.055 (2) 0.087 (3) 0.059 (2) 0.014 (2) 0.008 (2) −0.003 (2)
N8 0.048 (2) 0.077 (3) 0.0393 (19) 0.014 (2) 0.0049 (16) 0.0003 (18)
N9 0.065 (2) 0.059 (2) 0.051 (2) −0.0045 (19) 0.0138 (17) −0.0004 (17)
N10 0.042 (2) 0.087 (3) 0.0367 (17) −0.009 (2) 0.0043 (15) −0.0018 (18)
C1 0.037 (2) 0.058 (3) 0.051 (2) 0.0068 (18) 0.0077 (17) −0.0086 (19)
C2 0.037 (2) 0.064 (3) 0.049 (2) 0.0069 (19) 0.0053 (17) −0.0067 (19)
C3 0.048 (2) 0.068 (3) 0.047 (2) 0.017 (2) 0.0024 (18) −0.016 (2)
C4 0.050 (2) 0.058 (3) 0.049 (2) 0.013 (2) −0.0017 (18) −0.013 (2)
C5 0.043 (2) 0.073 (3) 0.063 (3) 0.007 (2) 0.020 (2) 0.002 (2)
C6 0.051 (2) 0.076 (3) 0.043 (2) 0.016 (2) 0.0078 (18) 0.006 (2)
C7 0.064 (3) 0.087 (3) 0.053 (3) 0.025 (3) 0.014 (2) −0.003 (2)
C8 0.063 (3) 0.077 (3) 0.054 (3) 0.018 (2) −0.003 (2) −0.005 (2)
C9 0.048 (2) 0.092 (4) 0.067 (3) −0.018 (3) 0.006 (2) −0.014 (3)
C10 0.073 (3) 0.070 (3) 0.071 (3) −0.026 (3) 0.014 (2) −0.002 (2)
C11 0.093 (4) 0.057 (3) 0.073 (3) 0.009 (3) −0.009 (3) 0.008 (2)
C12 0.096 (4) 0.072 (4) 0.082 (3) 0.032 (3) −0.005 (3) −0.009 (3)
C13 0.090 (3) 0.081 (4) 0.056 (3) 0.004 (3) 0.021 (2) 0.023 (2)
C14 0.087 (4) 0.052 (3) 0.085 (3) −0.001 (2) 0.012 (3) 0.008 (2)
C15 0.070 (3) 0.067 (3) 0.071 (3) −0.005 (2) 0.010 (2) −0.028 (2)
C16 0.066 (3) 0.100 (4) 0.045 (2) −0.025 (3) 0.006 (2) −0.013 (2)

Geometric parameters (Å, °)

Ni1—S1 2.1739 (12) N9—C15 1.456 (5)
Ni1—S2 2.1617 (12) N9—H9A 0.86 (3)
Ni1—S3 2.1732 (12) N10—C16 1.461 (5)
Ni1—S4 2.1658 (12) N10—H10C 0.87 (3)
Ni2—N5 2.164 (3) N10—H10D 0.85 (6)
Ni2—N6 2.065 (3) C1—C2 1.347 (5)
Ni2—N7 2.150 (4) C1—C5 1.434 (6)
Ni2—N8 2.145 (3) C2—C6 1.434 (5)
Ni2—N9 2.071 (4) C3—C4 1.359 (6)
Ni2—N10 2.151 (3) C3—C7 1.436 (5)
S1—C1 1.737 (4) C4—C8 1.412 (6)
S2—C2 1.738 (4) C9—C10 1.505 (6)
S3—C3 1.730 (4) C9—H9C 0.9700
S4—C4 1.737 (4) C9—H9B 0.9700
N1—C5 1.144 (5) C10—H10A 0.9700
N2—C6 1.143 (5) C10—H10B 0.9700
N3—C7 1.141 (5) C11—C12 1.497 (7)
N4—C8 1.146 (5) C11—H11A 0.9700
N5—C9 1.477 (5) C11—H11B 0.9700
N5—H5A 0.86 (3) C12—H12A 0.9700
N5—H5B 0.86 (3) C12—H12B 0.9700
N6—C11 1.463 (5) C13—C14 1.497 (6)
N6—C10 1.473 (5) C13—H13A 0.9700
N6—H6A 0.86 (2) C13—H13B 0.9700
N7—C12 1.486 (6) C14—H14A 0.9700
N7—H7A 0.86 (4) C14—H14B 0.9700
N7—H7B 0.86 (4) C15—C16 1.488 (6)
N8—C13 1.466 (6) C15—H15A 0.9700
N8—H8A 0.86 (3) C15—H15B 0.9700
N8—H8B 0.86 (3) C16—H16A 0.9700
N9—C14 1.453 (5) C16—H16B 0.9700
S2—Ni1—S4 87.98 (5) C5—C1—S1 117.0 (3)
S2—Ni1—S3 168.77 (5) C1—C2—C6 121.7 (4)
S4—Ni1—S3 92.72 (4) C1—C2—S2 121.4 (3)
S2—Ni1—S1 92.58 (4) C6—C2—S2 116.9 (3)
S4—Ni1—S1 170.10 (4) C4—C3—C7 121.0 (4)
S3—Ni1—S1 88.65 (4) C4—C3—S3 121.4 (3)
N6—Ni2—N9 177.56 (15) C7—C3—S3 117.7 (3)
N6—Ni2—N8 98.00 (14) C3—C4—C8 120.7 (4)
N9—Ni2—N8 81.73 (14) C3—C4—S4 120.5 (3)
N6—Ni2—N7 82.24 (16) C8—C4—S4 118.8 (3)
N9—Ni2—N7 95.37 (17) N1—C5—C1 176.5 (5)
N8—Ni2—N7 95.96 (15) N2—C6—C2 177.4 (4)
N6—Ni2—N10 98.69 (14) N3—C7—C3 178.2 (5)
N9—Ni2—N10 81.72 (14) N4—C8—C4 178.1 (5)
N8—Ni2—N10 163.04 (16) N5—C9—C10 109.7 (3)
N7—Ni2—N10 89.25 (16) N5—C9—H9C 109.7
N6—Ni2—N5 81.47 (14) C10—C9—H9C 109.7
N9—Ni2—N5 100.96 (15) N5—C9—H9B 109.7
N8—Ni2—N5 91.32 (13) C10—C9—H9B 109.7
N7—Ni2—N5 162.93 (16) H9C—C9—H9B 108.2
N10—Ni2—N5 88.20 (14) N6—C10—C9 107.8 (3)
C1—S1—Ni1 102.61 (14) N6—C10—H10A 110.1
C2—S2—Ni1 102.53 (13) C9—C10—H10A 110.1
C3—S3—Ni1 102.40 (15) N6—C10—H10B 110.1
C4—S4—Ni1 102.68 (15) C9—C10—H10B 110.1
C9—N5—Ni2 108.1 (3) H10A—C10—H10B 108.5
C9—N5—H5A 110 (3) N6—C11—C12 108.0 (4)
Ni2—N5—H5A 111 (3) N6—C11—H11A 110.1
C9—N5—H5B 114 (3) C12—C11—H11A 110.1
Ni2—N5—H5B 101 (3) N6—C11—H11B 110.1
H5A—N5—H5B 112 (5) C12—C11—H11B 110.1
C11—N6—C10 115.5 (4) H11A—C11—H11B 108.4
C11—N6—Ni2 106.8 (3) N7—C12—C11 109.7 (4)
C10—N6—Ni2 108.3 (3) N7—C12—H12A 109.7
C11—N6—H6A 108 (3) C11—C12—H12A 109.7
C10—N6—H6A 109 (3) N7—C12—H12B 109.7
Ni2—N6—H6A 109 (3) C11—C12—H12B 109.7
C12—N7—Ni2 107.2 (3) H12A—C12—H12B 108.2
C12—N7—H7A 110 (3) N8—C13—C14 110.7 (3)
Ni2—N7—H7A 120 (3) N8—C13—H13A 109.5
C12—N7—H7B 110 (4) C14—C13—H13A 109.5
Ni2—N7—H7B 109 (4) N8—C13—H13B 109.5
H7A—N7—H7B 100 (5) C14—C13—H13B 109.5
C13—N8—Ni2 109.1 (3) H13A—C13—H13B 108.1
C13—N8—H8A 105 (3) N9—C14—C13 110.2 (4)
Ni2—N8—H8A 118 (2) N9—C14—H14A 109.6
C13—N8—H8B 116 (3) C13—C14—H14A 109.6
Ni2—N8—H8B 108 (3) N9—C14—H14B 109.6
H8A—N8—H8B 101 (4) C13—C14—H14B 109.6
C14—N9—C15 119.5 (4) H14A—C14—H14B 108.1
C14—N9—Ni2 107.4 (3) N9—C15—C16 110.1 (4)
C15—N9—Ni2 108.0 (3) N9—C15—H15A 109.6
C14—N9—H9A 114 (4) C16—C15—H15A 109.6
C15—N9—H9A 100 (4) N9—C15—H15B 109.6
Ni2—N9—H9A 107 (5) C16—C15—H15B 109.6
C16—N10—Ni2 108.4 (3) H15A—C15—H15B 108.2
C16—N10—H10C 108 (3) N10—C16—C15 109.8 (3)
Ni2—N10—H10C 108 (3) N10—C16—H16A 109.7
C16—N10—H10D 108 (5) C15—C16—H16A 109.7
Ni2—N10—H10D 117 (5) N10—C16—H16B 109.7
H10C—N10—H10D 107 (5) C15—C16—H16B 109.7
C2—C1—C5 122.5 (3) H16A—C16—H16B 108.2
C2—C1—S1 120.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N5—H5A···N4i 0.86 (3) 2.30 (4) 3.098 (6) 154 (3)
N5—H5B···N2ii 0.86 (3) 2.48 (3) 3.186 (5) 140 (4)
N7—H7A···N3iii 0.86 (4) 2.56 (3) 3.207 (7) 134 (3)
N8—H8B···N3iii 0.86 (3) 2.48 (4) 3.164 (6) 138 (3)
N9—H9A···N1iv 0.86 (2) 2.58 (3) 3.387 (6) 156 (5)
N10—H10C···N2ii 0.87 (3) 2.34 (3) 3.198 (5) 173 (5)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x−1/2, −y+1/2, z+1/2; (iii) x+1, y, z; (iv) −x+5/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2151).

References

  1. Bois, H., Connelly, N. G., Crossley, J. G., Guillorit, J., Lewis, G. R., Orpen, A. G. & Thornton, P. (1998). J. Chem. Soc. Dalton Trans. pp. 2833–2838.
  2. Bruker (2007). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Keum, C., Kim, C., Kim, C., Kwak, H., Kwon, M. & Namgung, H. (1992). Bull. Korean. Chem. Soc.13, 695–699.
  4. Miller, J. S., Calabrese, J. C. & Epstein, A. J. (1989). Inorg. Chem.28, 4230–4238.
  5. Ren, X.-M., Duan, C.-Y., Zhu, H.-Z., Meng, Q.-J., Hu, C.-J., Lu, C.-S. & Liu, Y.-J. (2001). Transition Met. Chem.26, 295–299.
  6. Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev.227, 93–127.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Simmons, H. E., Vest, R. D., Blomstrom, D. C., Roland, J. R. & Cairns, T. L. (1962). J. Am. Chem. Soc.84, 4746–4756.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808028663/hy2151sup1.cif

e-64-m1264-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028663/hy2151Isup2.hkl

e-64-m1264-Isup2.hkl (248.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES